Attribution/License

e Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)

e This slideset and associated source code may not be distributed
without prior written notice

Please do not redistribute slides/source without
prior written permission.

http://www.mshah.io

C++ FRench

User C’{r'oup

Développeurs C++ de tous les pays, rencontrez-vous !

Fundamentals of Concurrency

with Mike Shah

Social: @MichaelShah

Web: mshah.io
Courses: courses.mshah.io
19:00 - 21:00 Tue, May 14, 2024 DYouTube
~60 minutes | Introductory/Advanced www . youtube.com/c/MikeShah

Audience http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

What you’re going to learn today

e Recap of #include <thread>

o std::thread, std:;jthread
o Data Parallel Problem (no
synchronization)

e Some Basic Patterns with

Threads
o Thread Pools

o Producer/Consumer @
e How to observer behavior of N/ A\
threaded programs .

o Using gdb and udb | ‘ o

Pretend these seats are filled :)
https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

Your Tour Guide for Today

by Mike Shah

e Associate Teaching Professor at Northeastern

University in Boston, Massachusetts.

o | love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

o My research is divided into computer graphics (geometry) and
software engineering and computer systems.

e | am available for contract work or technical training

on Modern C++, DLang, Concurrency, OpenGL, and Web .
www.mshah.io

Vulkan projects @3 YouTube _
e Outside of work: guitar, running/weights, traveling and |ntes://www.youtube.com/c/MikeShah

_ Non-Academic Courses
cooking are fun to talk about courses.mshah.io

Conference Talks
http://tinyurl.com/mike-talks

4

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code for the talk

e Located here:
https://github.com/MikeShah/Talks/tree/main/2024/french cpp user group frug

— O MikeShah / Talks

¢> Code (-) Issues {9 Pullrequests () Actions [Projects [I]

[T ¥ main ~ Talks / 2024 / french_cpp_user_group frug/

mike readme

https://github.com/MikeShah/Talks/tree/main/2024/french_cpp_user_group_frug

The abstract that you read and enticed
you to join me is here!

Abstract ﬁ

With the addition of <thread> in C++ 11, programmers now have an interface for
launching a std: :thread(or std::jthread) with relative ease. But how do we use
threads effectively? Often we hear about scary things like ‘deadlock’ or ‘dataraces’,
and you are further warned to be very cautious with threads, while simultaneously
told that ‘threads are the answer to performance’. In this talk, we will go over the
fundamentals of threads, and approach your ‘second day’ with std::thread, and
showcase practical examples of how to use threads and use them safely. We’ll cover
some ‘pitfalls’, but the goal is to leave this talk understanding more about threads so
we can be more comfortable eventually ‘architecting software’ using multiple threads.
We’ll analyze and even investigate how to implement thread-pools,
producer-consumer, and other common patterns used in threading and found in the
real world. After leaving this talk, you should feel more comfortable to try your own
experiments, and consider architecturing your software with threads to maximize
your performance.

Age of Empires 4

ANNIVERSARY
EDITION

Computers are Incredibly Powerful (Age of Empires IV)

e I'm very fascinated by how
powerful our computers
are!

e My fascination is often in
game programming

o Look at the hundreds of
individual AI agents running
around!

o The physics simulation of a
crumbling castle

o The beautiful graphics and
animations

e There’s a lot of interesting
‘stuff’ being computed
every millisecond!

Age of Empires 4 https://media2.qiphy.com/media/l1mV0tBosR61ac3m1i/200.qif

https://media2.giphy.com/media/l1mV0tBosR61ac3m1i/200.gif

Engineering Challenges

Now of course -- there’s lots of
interesting engineering going on
o Much of that engineering is in the name of
performance

The image to the right is a full talk
about the ‘multithreading’ that was
needed to enable the previous
animation you saw from Age of
Empires IV.

o (Notes included below for some context)
In short -- today we’re going to want
to learn a bit about the primitives
that enable us engineer performant
systems

Each circle here is a simulation
island, an independent group of units
where each individual unit, in theory,
only is looking at other units in the
same island during its the update
phases that require modifying unit
state. Across the rest of the map,
there are probably dozens, if not
hundreds, more. Plenty enough
islands to spread across the cores of
most PCs these days.

https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the 9

https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the

Serving Coffee

(2 lines are better than 1)

C_anfu('f‘ﬁ-kk = ;\V'wc, Qu.gu..ns O ~a C‘Q@Qﬂ. he‘d‘;"\

$R%AERIX2RY [3
1331xa231322 — | &

Pa(‘“ul\ = (e Queuwcs (e C‘{(‘c< thL&{M

2252232253 ->

© dow Amabng, 2013
(and sequential) -- added by Mike
%133 3313112223332 %2324% -\‘g@al

10

Sequential Software Construction (1/4)

Process

e We learn software construction Instruction
writing programs that execute

one instruction at a time
o 1l.e. We have one main ‘thread of
execution’ in our process running
o Note: We use the terms “serial” or
“sequential” to describe this execution Instruction

Sequential Software Construction (2/4)

Process

e We can abstract our visualization,

and show the call stack.
o (One function calling the other, with
the indentation indicating the call
stack)

12

Sequential Software Construction (3/4)

e Asyou mightimagine -- having
two or more streams of execution
could speed things up!

o Or otherwise -- just make solving a
problem more easy to reason about

Another logical
stream of execution

Process

a1n%ax]

13

currek = Tue Quames Om Cxffar Flsdin Another logical Process

FARAERIZ2RY [7 :
ASIAARILIAE — stream of execution

P“ Ald = Twe Queuwcs (we C-((’q aclegue

&u;uzz;;;z-m—» |
; ;

© Jow Amabng, 2o

(and cequential) -- added by Mike B
13313223212 222334223243 »Fgﬁ;l

The motivation for allowing a program to have ‘2’ (or more) execution paths is exactly what is shown
on the illustration on the left with ‘coffee machines’ (which one would you line up in?)
o | think we all understand the idea that if we have two lines we can do things faster
m (top picture -- perhaps two people will always have their wallets ready, rather than only the
first person in the line to save ‘overall time’)
m (middle picture -- two coffee machines, should be about twice as fast service)
m (bottom picture - Slowest line)

Concurrency

Definitions

Parallelism vs Concurrency (programming context) (1/3)

Concurrency is often used interchangeably with ”F”“J

parallelism--so let’s separate those two terms. R g

1. Concurrency Definition: Multiple things U ’ ﬂ
can happen at once, the order matters, and . t/)ww; =
sometimes tasks have to wait on shared RS s === |
resources.

2. Parallelism Definition: Everything happens
at once, instantaneously

16

Parallelism vs Concurrency (programming context) (2/3)

Concurrency is often used interchangeably with T xiiairaie F”“J
parallelism--so let’s separate those two terms.
Pa mliat = wes Cwse Coffee Mackiyn
1. Concurrency Definition: Multiple things e i
can happen at once, | HM
B s i &

2. Parallelism Definition: Everything happens
at once, instantaneously

17

Parallelism vs Concurrency (programming context) (3/3)

Concurrency is often used interchangeably with o s 2331 A D
parallelism--so let’s separate those two terms.
Partel = “Twe Quewes Twe Coffec ackipng
1. Concurrency Definition: Multiple things R
2AiRrIrE—— | &
can happen at once, H",

(an dfq wtial) -- added by Mike]
13312223115 #3431322324% \(g’kl

2. Parallelism Definition: Everything happens

at once, instantaneously
Both concurrency and parallelism can be utilized to

yield better software construction -- often times
meaning better performance.

18

(Another View) Concurrency versus Parallel

e Concurrency -- There are multiple flows of control on a
(potentially) shared piece of data

o More interested in structuring a problem when writing concurrent software
e Parallelism -- This is achieved by a hardware mechanism where

operations are done simultaneously.
o The operations are potentially related
o You are doing many things at once.
o More interested in executing operations fast

e Both ideas often motivated by increased performance
o The potential for more tasks to happen at once can thus increases performance
m Typically if we have multiple cores on our machine
m Sometimes concurrency/parallelism available on other pieces of hardware
e e.g.disk fetching memory can be a non-blocking operation
(asynchronous) until data is needed (concurrency)
e e.g.disk fetching multiple pieces of memory at once (parallelism)

19

“Performance is the currency of computing.

20

“Performance is the currency of computing. You
can often “buy” needed properties [of software] with
performance” - Charles Leiserson

rrrrrrrrrrr

TTTTTTTTTTTTTT

ALGORITHMS

21

https://en.wikipedia.org/wiki/Charles_E._Leiserson

The Free Lunch is Over - Herb Sutter (1/2)

o How many folks have read
this article written by Herb
Sutter?

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software

Books & Articles Training & Consulting

November 4: Other Concurrency Sessions at PDC
November 3: PDC'09: Tutorial & Panel

October 26: Hoare on Testing
October 23: Deprecating export Considered for ISO C++0x

The Free Lunch Is Over
A Fundamental Turn Toward Concurrency in Software
By Herb Sutter

The biggest sea change in software development since the OO revolution is knocking at the door, and its name is Concurrency.

This article appeared in Dr. Dobb's Journal, 30(3), March 2005. A much briefer version under the title "The Concurrency Revolution™ appeared in C/C++ Users Journal,
23(2), February 2005.

Update note: The CPU trends graph last updated August 2009 to include current data and show the trend continues as predicted. The rest of this article including
all text is still original as first posted here in December 2004.

Your free lunch will soon be over. What can you do about it? What are you doing about it?

The major processor manufacturers and architectures, from Intel and AMD to Sparc and PowerPC, have run out of room with most of their traditional approaches to boosting
CPU performance. Instead of driving clock speeds and straight-line instruction throughput ever higher, they are instead turning en masse to hyperthreading and multicore
architectures. Both of these features are already available on chips today; in particular, multicore is available on current PowerPC and Sparc |V processors, and is coming in
2005 from Intel and AMD. Indeed, the big theme of the 2004 In-Stat/MDR Fall Processor Forum was multicore devices, as many companies showed new or updated multicore
processors. Looking back, it's not much of a stretch to call 2004 the year of multicore.

And that puts us at a fundamental turning point in software development, at least for the next few years and for applications targeting general-purpose desktop computers and
low-end servers (which happens to account for the vast bulk of the dollar value of software sold today). In this article, I'll describe the changing face of hardware, why it

suddenly does matter to software, and how specifically the concurrency revolution matters to you and is going to change the way you will likely be writing software in the

http://www.qotw.ca/publications/concurrency-ddj.htm

22

http://www.gotw.ca/publications/concurrency-ddj.htm

The Free Lunch is Over - Herb Sutter (2/2)

o .

o How many folks have read
this article written by Herb
Sutter?

o The reality is -- our CPU
architectures will continue
to adopt multicore
architectures

m We don’t (as much) get
‘free performance’
from CPU speeds
anymore

o Why? Next slide!

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software

Books & Articles Training & Consulting

November 4: Other Concurrency Sessions at PDC
November 3: PDC'09: Tutorial & Panel

October 26: Hoare on Testing
October 23: Deprecating export Considered for ISO C++0x

The Free Lunch Is Over
A Fundamental Turn Toward Concurrency in Software

By Herb Sutter

The biggest sea change in software development since the OO revolution is knocking at the door, and its name is Concurrency.

This article appeared in Dr. Dobb's Journal, 30(3), March 2005. A much briefer version under the title "The Concurrency Revolution™ appeared in C/C++ Users Journal,
23(2), February 2005.

Update note: The CPU trends graph last updated August 2009 to include current data and show the trend continues as predicted. The rest of this article including
all text is still original as first posted here in December 2004.

Your free lunch will soon be over. What can you do about it? What are you doing about it?

The major processor manufacturers and architectures, from Intel and AMD to Sparc and PowerPC, have run out of room with most of their traditional approaches to boosting
CPU performance. Instead of driving clock speeds and straight-line instruction throughput ever higher, they are instead turning en masse to hyperthreading and multicore
architectures. Both of these features are already available on chips today; in particular, multicore is available on current PowerPC and Sparc |V processors, and is coming in
2005 from Intel and AMD. Indeed, the big theme of the 2004 In-Stat/MDR Fall Processor Forum was multicore devices, as many companies showed new or updated multicore
processors. Looking back, it's not much of a stretch to call 2004 the year of multicore.

And that puts us at a fundamental turning point in software development, at least for the next few years and for applications targeting general-purpose desktop computers and
low-end servers (which happens to account for the vast bulk of the dollar value of software sold today). In this article, I'll describe the changing face of hardware, why it

suddenly does matter to software, and how specifically the concurrency revolution matters to you and is going to change the way you will likely be writing software in the

http://www.qotw.ca/publications/concurrency-ddj.htm

23

http://www.gotw.ca/publications/concurrency-ddj.htm

omputer

Moore’s Law: The number of transistors on microchips doubles every two years

Transistor count

.
13311
L
#
.'..3:223.
0% g0
«able
e

oftware and Architecture Trends

A few basic ideas and ‘laws’

0—0”"

od >’
.43” "0£ st ot
' e — - N "
1980 1990 1995 200¢ 20(
Yoar

€007 Dt e 4 g ot

Source: Computer Architecture, A Quantitative Approach by John L. Hennessy and David A. Patterson

100,000
>
0,000 | e ol
Processor Gap grew 50%
100 | per year
b
/"/ Memory R -t

201(

24

Three long held Software Trends

1. Multicore hardware architecture will continue to shape how we
write software

2. Cores will come in different form factors (e.g. smaller)
a. (Oreven amix of small and large cores on a single processor)

3. Processing speed (GPU or CPU) will likely continue to outpace
‘reading speed’ (i.e. I/O from disk)

25

"The number of transistors incorporated in a chip will approximately double

MOOI'e,S LaW (1/2) every 24 months.”

--Gordon Moore, Intel co-founder

Moore’s Law: The number of transistors on microchips doubles every two years
L A].’Olll’ld 1965 GO].’dOl’l Moores law descrlos the empical equriy st the pumberofranitors onInteated s doublesappronimatelycvery two vears, . NN
Moore predicted the) b
3 monem ssf8s
number of transistors . gggﬁzgg
AN e
would roughly double el p
TR S
every 18-24 months LIRS o
o And largely this held true! o g™
° % ’
O un o O 2
g o S
" & o o o " P 10 o o P P P
count! \\/m?m v?w'r‘r?fhf‘ microchip was ﬁ(ﬁr‘mrfc‘rh rovd [
ainst the world's largest problerr CC-BY by the authors Hannah Ritchi

26

. Around 1965 Gordon Moores b ‘ S i 17 S S o : o . h Hul“‘

. transistor density increases)
More heat is generated

Faster clock speeds demand more power
And memory speeds did not keep up with the
rate at which we can compute

27

Dennard Scaling (1/3)

* Physically (on the atomic scale)
transistors are packed very
tightly together

* Heat becomes a problem

* Energy consumption increases

* (i.e. Dennard Scaling)

http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/2010-11/TechnologicalSingularity/pageviewa478.html?file=forfeasibility.html
https://en.wikipedia.org/wiki/Dennard_scaling

® So the hardware industry has adapted
(effectively keeping Moore’s Law
accurate)

® \We have more smaller cpus (i.e., cores)

on our machines

http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/2010-11/TechnologicalSingularity/pageviewa478.html?file=forfeasibility.html
https://en.wikipedia.org/wiki/Dennard_scaling

So--does our hardware support
concurrency?

Yes! Each core can be working on a
Sepa rate taSk. (Note: A single core can also handle concurrency)

http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/2010-11/TechnologicalSingularity/pageviewa478.html?file=forfeasibility.html
https://en.wikipedia.org/wiki/Dennard_scaling

Another problem--Processor Memory Gap (1/2)

The processor memory
gap in particular
continues to grow!

o So even as cpus get faster,
other technologies cannot
keep up.

o This tends to make our
applications I/O bound

m (i.e. we are waiting on
the data to be
read/written from
memory)

o« *?
0".
B
s
»
e
o
»
or .-," Gap grew 50%
e per year
.-
o
.
r. |
" o
.... 000:0;0000000000
PR

o
'.-.‘:0’,..’

J007 Cimewent e Al ngen renerved

Source: Computer Architecture, A Quantitative Approach by John L. Hennessy and David A. Patterson

31

Today we mitigate the problem in a relatively simple
way from a hardware perspective--utilize more cores

(From an engineering perspective: we want to fetch or
be fetching data concurrently to keep our cores busy)

32

Concurrency

(One more time)

Slatency (5) ==

33

Concurrency -- Is it worth it?

e There is one other law that I want to briefly introduce on the next
slide (Amdahl's Law)

e In short -- it tries to answer the question of

o “Can I split up my software into different jobs that could execute either
concurrently or in parallel”
o “Andif I go through that effort -- will I get a reasonable speedup”
m (i.e. How ‘serial’ is my program)

(Note: There are other questions to ask and other variants of Amdahl’s law:

https://accu.org/journals/overload/28/157/teodorescu 2795/) 3

https://accu.org/journals/overload/28/157/teodorescu_2795/

Amdahl's law is a formula used to find the maximum

’ improvement possible by improving a particular part of a
Amdahl S Law system. In parallel computing, Amdahl's law is mainly
used to predict the theoretical maximum speedup for

program processing using multiple processors. ... This
term is also known as Amdahl's argument.

i

:
e Performance (execution speed)| whatis Amdahl's Law? - Definition from Techopedia
° But hOW mU.Ch performance? https://www.techopedia.com/definition/17035/amdahls-law

1
(1—p)+ =

Slatency (3) =

s = speedup of task that benefits from improved resources
p = portion of execution time benefiting from improved speedup

https://en.wikipedia.org/wiki/Amdahl%27s law
Applied example: http://web.cs.iastate.edu/~prabhu/Tutorial/CACHE/CompPerf.pdf

https://en.wikipedia.org/wiki/Amdahl%27s_law
http://web.cs.iastate.edu/~prabhu/Tutorial/CACHE/CompPerf.pdf

(Aside: Some parallelism for free (implicit parallelism))

CPU Pipelining is an example
of parallelism we typically get

for free

o (i.e. implicit parallelism)
Potential compiler
optimizations to automatically

vectorize code.

Instruction

Clock

Instruction

- 1 |

Non-Pipelined

Pipelined

https://s0.stackpointer.io/wp-content/uploads/2009/02/pipelining.png

36

https://s0.stackpointer.io/wp-content/uploads/2009/02/pipelining.png

(Aside: Some parallelism not for free (explicit) parallelism)

e Using the GPU

o Whether CUDA or OpenCL for SIMD [Instruction Pool) :..q.. S | (R
general purpose GPU — ‘ .
progl’ammlng Bloc MO, 1) Slockl 1) Block(, 1)

o Or perhaps a shader language S :_é;
like GLSL or HLSL C; =

e SIMD Instructions s g

o Our SSE or AVX instructions

(

37

Threads

(i.e. “lightweight processes™)

38

The Necessity of Concurrency

e In general, concurrency (like parallelism) is used because it is

necessary for a system to function.
o Concurrency
m Real world concurrency examples
e e.g.an orchestra, a subway transit system, cars at a traffic stop
m Computer Science examples
e e.g. Amemory allocator, File I/O, Network requests (awaiting data)
e e.g. Aserver trying to handle millions of users
o Parallelism
m Real world example:
e Highway with multiple lanes, multiple elevators in an apartment all
going up
m Computer Science example
e fragment shader in a computer game running in parallel so we can
render at 60 FPS

39

(Live Concurrency Example)

(Trains are a great example of concurrency

and parallelism by the way)

e (One of my favorite parts of Paris is taking
the trains everywhere)

Concurrency Mechanism - Thread

e One mechanism for achieving

concurrency is a ‘thread’
o A ‘thread’ allows us to execute two
control flows at the same time
o The ‘main thread’ is where our
program starts
m We may then have 1 or more
additional threads:
e executing a block of code
e executing other functions
e And overall--sharing the
same code, and the same
data
o (all while our main
thread coordinates
with this thread)

(Process)
The Main thread

Spawn 1
Additional thread

41

What is a thread? (1/2)

e A ‘thread’ is often defined
as a ‘lightweight process’
e A thread has its own
‘thread-control block’
with:
o A threadid (TID)
o Aits own logical control flow
m (e.g.instruction pointer)

o Its own stack for local
variables

Thread 1 (main thread) Thread 2 (peer thread)

| stack 1

stack 2]

Thread 1 context:
Data registers
Condition codes
SP,

PC,

Thread 2 context:
Data registers
Condition codes
SP,

PC,

Shared code and data

shared libraries

read/write data

read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

42

What is a thread? (2/2)

e 1Process (i.e. your ek misitpentn | Gelabdid
. . | o .
application) can have : @ : G
: : |____run-timeheap |
many threads: ' (), ol roadfwrite data
o Each thread shares the same " [shared code, data ! read-only code/data
code, data, and kernel : and kernel context | 0
: Kernel context:
context E . : VM structures
o But each thread can execute | @ @ . Descriptor table
eiq . | ! brk pointer
separately within the same i !

process (i.e. address space)
independently.

43

(Aside: Thread vs Process -- What’s the difference?)

e A ‘process’ can contain multiple threads
o Threads exist within the process

e The advantage of threads is that they require fewer system

resources

o Organizing a group of threads to ‘cooperatively’ work together is likely cheaper
than organizing multiple processes to work together

e Threads can be scheduled (e.g. by priority, round robin, etc.), and
usually your thread API provides often provides some control over
this.

m https://www.ibm.com/docs/en/aix/7.3?topic=threads-thread-scheduling

44

https://www.ibm.com/docs/en/aix/7.3?topic=threads-thread-scheduling

When to use threads

Threads associated with process foo

e Heavy Computations A
o Use threads to work on a heavy computation @
m The most common case is actually using threads on :
your GPU for graphics @. H Fd
m GPUs have 100s or 1000s of threads that are good for
massively parallel tasks.
e (You could also use things like CUDA to take
advantage of your graphics hardware)
o You may need to use a series of threads to otherwise
resolve complex computations on your CPU where
decisions may need to be made.

e Using threads to separate work
o Gives performance (Same as above)
o But also simplifies the logic of your problem

e (Ifit’s useful -- you can visualize ‘threads’ like
workers being hired in a factory, ideally working
together to solve some problem, and balancing the
right number of helpers)

shared code, dat
and kernel context

’

45

(Aside) The term ‘thread’

e There’s some confusion when it comes to the term ‘thread’

o Operating system-thread
m Also called a ‘kernel thread’ [link]

m These are threads that the operating system gets to schedule and assign to do work.
e Number of kernel threads != number of CPU cores

e But there are some number of kernel threads
o user-space threads

m These are what we ‘spawn’ from a process

m Operating system may assign a user-thread to be run on a kernel thread (i.e. we may
on some architectures think of this as a 1:1 model)
o GPU threads

Perhaps many grouped up together to do some computation in a ‘thread block’
||

Usually 100s or 1000s of these ‘small threads’ executing a ‘kernel’ (usually a small
program) or ‘shader’ (for graphics)

e These are usually meant for ‘data parallel’ computations

46

https://www.ibm.com/docs/en/aix/7.3?topic=environment-understanding-kernel-threads

Threads in Modern C++

The std: :thread - Since C++11, we have a standard interface to threading

47

Thread Libraries

C++ Thread support library

° Before C++11/14/17/20/;3, th.ere Thread support library
eXISted threadlng llbrarleS Wlth C++ includes built-in support for threads, mutual exclusion, condition variables, and futures.

different semantics A
O lerarles 111{6 “BOOSt”, Inte]_ “Thread Threads enable programs to execute across several processor cores.

Defined in header <thread>

Bulldlng B].OC].(S”, or “pthread” were thread (C++11) manages a separate thread
(class)
used jthread (C++20) std::thread with support for auto-joining and cancellation
m Perhaps you have used pthread at SIS
. Functions managing the current thread
]'eaSt ln C . . Defined in namespace this_thread : . ;
u (Std::thl‘ead I belleve 1S yiald Bty (sfl:ggs:fs that the implementation reschedule execution of threads
implemented with pthread most qebriesdil retus the thread id of the current thread
pOSiX SystemS) sleep_for (C++11) (sftﬁgjoif;e execution of the current thread for a specified time duration

® Typlcally tOday R — Eefﬁ;;s@tﬂt;e execution of the current thread until a specified time point
using the standard C++
threading library for portability
reasons as the default choice.

48

We actually have a
good number of
primitives (mostly
low level) for
concurrency
support.

Understanding how
to use them is part

of the goal of
today’s talk.

Concurrency support library (C++11)

thread — jthread (c++20)

atomic — atomic flag

atomic ref (c++20) — memory order
Mutual exclusion — Semaphores (c++20)
Condition variables — Futures

latch (c++20) — barrier (C++20)

Safe Reclamation (c++26)

#include <thread>

C++ Concurrency support library std::thread

std::thread

Defined in header <thread>
class thread; (since C++11)

he class thread represents a single thread of executionf. Threads allow multiple functions to execute concurrently.

Threads begin execution immediately upon construction of the associated thread object (pending any OS scheduling
delays), starting at the top-level function provided as a constructor argument. The return value of the top-level function
is ignored and if it terminates by throwing an exception, std: :terminate is called. The top-level function may
communicate its return value or an exception to the caller via std: :promise or by modifying shared variables (which
may require synchronization, see std: :mutex and std: :atomic).

std::thread objects may also be in the state that does not represent any thread (after default construction, move from,
detach, or join), and a thread of execution may not be associated with any thread objects (after detach).

No two std: :thread objects may represent the same thread of execution; std: :thread is not CopyConstructible or
CopyAssignable, although it is MoveConstructible and MoveAssignable.

51

https://en.cppreference.com/w/cpp/thread/thread

Thread Example - Launching a thread (1/2)

#include <thread>
o std::thread

(Aside: For those familiar, this is S e
old test(int x
essentially going to do ‘fork-join’ [JEEEESCEICIES << std::endl;
_) std::cout << << X << std::endl;
parallelism)
int main() {

std::thread myThread(&test,

1
1
1

B WN

N

b b e

RS
J

O 00~

NN N NN -

B W

myThread. join();

std: :cout << << std::endl;

) = O

i

return 0;

https://en.cppreference.com/w/cpp/thread/thread

mike:concurrency$ g++ -std=c++17 thread2.cpp -o prog -lpthread
mike:concurrency$./prog
Hello from our thread!
Argument passed in:100
Hello from the main thread!

Don’t forget to
link in the
pthread library
test(int x) { for posix users.

std: :cout <<
std: :cout <<

main() {

std::thread myThread(&test,

myThread. join();

std: :cout << << std::endl;

https://en.cppreference.com/w/cpp/thread/thread

Visual execution of “Hello Thread” (1/13)

]

]
=

[EEQEIE

[S S

NINNNNNN -

B W

b b e

O 00 ~

SN

~l O\ N

O 00

) = O

i

(-

oid test(int x) {

std::cout << << std::endl;
std: :cout << << X << std::endl;

int main() {

(-

std::thread myThread(&test,

myThread. join();

std: :cout << << std::endl;

return 0;

Main Thread

1 test(int x) {
std::cout << << std::endl;
std: :cout << << X << std::endl;

main () function where all
C++ programs start.

- main() {

std::thread myThread(&test,

We have 1 thread in our

program (the main thread)
1 myThread. join();

std: :cout << << std::endl;

.
3

Main Thread

id test(int x) {
std::cout << << std::endl;
std: :cout << << X << std::endl;

We begin constructing i) £

std: :thread
myThread

std::thread myThreadl&test,

myThread. join();

std: :cout << << std::endl;

.
3

Main Thread

oid test(int x) {
std::cout << << std::endl;
std: :cout << << X << std::endl;

nt main() {

std::thread myThreadl&test,

myThread. join();

» D 0D'=

std::cout << << std::endl;

AN N

NNNNN R

B L

Our new thread

will begin
Main Thread executing it's
logical control
flow from the :
‘test’ function. 7 void test(int x) {
Separately from - std::cout << << std::endl;
main() 9 std::cout << << X << std::endl;

std::thread myThread(&test, 100)

The thread will 12 int nain() {

§tart e)_(eCUtlng std: :thread myThreadI &test,)j
immediately on -

construction

myThread. join();
(Remember,

threads shares
code and the
heap)

std: :cout << << std::endl;

So now we have two

Main Thread threads” executing

id test(int x) {
std::cout << << std::endl;
std: :cout << << X << std::endl;

P myThread

- main() {

std::thread myThread(&test,

myThread. join();

std: :cout << << std::endl;

.
3

Both threads are
executing concurrently!

Main Thread
(maybe on separate cores, or

maybe on the same one)

| 7 void test(int x) {
3 std::cout << << Std::endl;
: std: :cout << << X << std::endl;

P myThread
- main() {

Il. ZL std::thread myThread(&test,

myThread. join();

std: :cout << << std::endl;

.
3

Main Thread

std::thread myThread(&test, 100)

myThread. join()

We just happen to execute the next line in main

thread

myThread. join() tells this thread (‘main’) to wait
on our other thread (tid) to finish.

o We ‘wait’ in the main thread, because this is
where we are calling join from

myThread

test(X))
std::cout << << Std::endl;
std: :cout << << X << std::endl;

main() {

std::thread myThread(&test,

myThread. join();

std::cout << << std::endl;

Main Thread

void test(int x) {
std::cout << << Std::endl;
std::cout << << X << std::endl;

O O

1
1

1

1
)
L
35

P myThread

|

t main() {

std::thread myThread(&test,

[EEQEIE

(0 I SN

=X G WY

~N O

NN INNNN - -

myThread. join();

O Oy oo

std: :cout << << std::endl;

WN =

return

.
3

(5N

Main Thread

void test(int x) {
std::cout << << Std::endl;
std::cout << << X << std::endl;

G
e]

(R

P myThread
t main() {

std::thread myThread(&test,

f =
(
7
el
i
p)
7
b]

[EEQEIE

P
(0 I SN

~N O

myThread. join();

O Oy oo

std: :cout << << std::endl;

WN =

return

.
3

NN INNNN - -

(5N

, When we return, our
Main Thread :
thread terminates.
Now our ‘main’ thread
can resume /oid test(int x) {

std::cout << << std::endl;
std::cout << << X << std::endl;

2 it wEiHe) §

std::thread myThread(&test,

myThread. join();

std: :cout << << std::endl;

.
3

Main Thread

7 void test(int x) {
std::cout << << std::endl;
std: :cout << << X << std::endl;

int main() {

std::thread myThread(&test,

myThread. join();

) = O

std: :cout << << std::endl;

return

.
3

NN ININNN

IS VYR

Main Thread

7 void test(int x) {
std::cout << << std::endl;
std: :cout << << X << std::endl;

myThread
int main() {

std::thread myThread(&test,

myThread. join();

std: :cout << << std::endl;

return

.
23

Same example as before -- but with a lambda!

Same example as before,
but instead of a function, I
have a lambda with 1
parameter (and no return

type)
o std::thread takes a callable as
the parameter--so lambdas,
functions, etc. are all fine!

> int main() {

auto lambda = [](int x){
std::cout << << std::endl;
std::cout << << X << std::endl;

1

std: :thread myThread[lambda,

myThread. join();

std::cout << << std::endl;

https://en.cppreference.com/w/cpp/named_req/Callable

Now how about if we wanted 10 threads (0/5)

Let’s create a

std::vector<std: :thread>
o Then we’ll launch 10
threads from a loop

It’s important however,
that we also join each of
the threads!

7 int main() {

auto lambda = [J(int x){
std::cout <<
std::cout <<

<< std::this_thread::get_id() << std::endl;
<< X << std::endl;

+s

std::vector<std::thread> threads;

for(int 1=0; 1 < 10; i1++){
threads.push_back(std: :thread(lambda,i));
threads[i].join();

}

std::cout << << std::endl;

68

Now how about if we wanted 10 threads (1/5)

e So here we create each
of our threads and join
them int main() {

auto lambda = [J(int x){
std::cout << << std::this_thread::get_id() << std::endl;
std::cout << << X << std::endl;

};
std::vector<std::thread> threads;

for(int 1=0; 1 < 10; i1++){
threads.push_back(std: :thread(lambda,i));
threads[i].join();

}

std::cout << << std::endl;

69

Now how about if we wanted 10 threads (2/5)

e So here we create each
of our threads and join

ike:concurrency$ g++ -std=c++17 thread3.cpp -o prog -lpthread
ike:concurrency$./prog

thread.get_1id:140658209871616 2o 1oy
Argument passed in:0 . auto lambda = [J(int x){

thread.get_1d:140658209871616 std::cout << << std::this_thread::get_1d() << std::endl;
Argument passed in:1 std::cout << << X << std::endl;
thread.get_1d:140658209871616 };

Argument passed in:2

int main() {

VoOoO~NOTULDE WN K

thread.get_id:140658209871616 std::vector<std::thread> threads;

Argument passed in:3 for(int 1=8; i < 18; is+){
thread.get_ld:149658209871616 ¢ threadstpush_baék(std::thread(lambda,i));
Argument passed in:4 threads[i].join();
thread.get_1d:140658209871616 ’

Argument passed in:5
thread.get_1d:140658209871616 tinue exec the :
Argument passed in:6 std::cout << << std::endl;
thread.get_1d:140658209871616

Argument passed in:7) return 0;

thread.get_1d:140658209871616

Argument passed in:8

thread.get_1d:140658209871616

Argument passed in:9

ello from the main thread!

The result seems a little

strange...anyone see the

e So here we create each _glie]ge]el[=1sa¥¢
of our threads andyg o

ike:concurrency$ g++ -std=c++17 threadl »10g -lpth

ike:concurrency$./prog

thread.get_1id:140658209871616 9

Argument passed in:0 10 lambda = [](int x){

thread.get_1d:140658209871616 11 std: :cout << << std::this_thread::get_1d() << std::endl;
Argument passed in:1 12 std::cout << << X << std::endl;
thread.get_1d:140658209871616 13 +s

Argument passed in:2 '

thread.get_id:140658209871616 TZ std::vector<std::thread> threads;
Argument passed in:3 R W e Sl P
thread.get_id:140658209871616 BRCior T8 L < 46, o)l

threads.push_back(std: :thread(lambda,i));

Argument passed in:4 threads[i].join();

thread.get_1d:140658209871616
Argument passed in:5
thread.get_1d:140658209871616 2
Argument passed in:6 23 std::cout << << std::endl;
thread.get_1d:140658209871616 2

Argument passed in:7

thread.get_1d:140658209871616

Argument passed in:8

thread.get_1d:140658209871616

Argument passed in:9

ello from the main thread!

e By joining our threads immediately after
launching our code, we’ve effectively
made our program sequential (i.e. no

e SO here we create each performance gain)

of our threads and join ECEELGIEREE-Rici11Keli

ike:concurrency$ g++ -std=c++17 thread3.cpp -o prog -lpth
ike:concurrency$./prog
thread.get_1id:140658209871616

Argument passed in:0 16 1am

thread.get_1d:140658209871616 11 std::ce << std::this_thread::get_id() << std::endl;
Argument passed in:1 i std: :cout << X << std::endl;
thread.get_1d:140658209871616 13 +s

Argument passed in:2 14

thread.get_id:140658209871616 = Sid SUeCTONCG: TR T don

Argument passed in:3 s Ah
thread.get_1d:140658209871616 i o
Argument passed in:4 .
thread.get_1d:140658209871616
Argument passed in:5
thread.get_1id:140658209871616
Argument passed in:6
thread.get_1d:140658209871616
Argument passed in:7
thread.get_1d:140658209871616
Argument passed in:8
thread.get_1d:140658209871616
Argument passed in:9

ello from the main thread!

i=0; 1 < 10; 1+M{
threads.push_back(std: :thread(lambda,i));
19 threads[i].join();

std::cout << << std::endl;

https://aws.amazon.com/blogs/devops/detecting-concurrency-bugs-with-amazon-codeguru/

e SO here we create each
of our threads and join

mike:concurrency$ g++ -std=c++17 thread3_fix.cpp -o prog -lpthread
mike:concurrency$
mike:concurrency$./prog
thread.get_1d:139995667298048
Argument passed in:0
thread.get_1d:139995507902208
Argument passed in:3
thread.get_id:thread.get_1d:139995642119936
Argument passed in:4
thread.get_1d:139995633727232
Argument passed in:5
139995650512640

Argument passed in:2
thread.get_1d:139995658905344
Argument passed in:1
thread.get_1d:139995608549120
Argument passed in:8
thread.get_1d:139995532752640
Argument passed in:9
thread.get_1d:139995616941824
Argument passed in:7
thread.get_1d:139995625334528
Argument passed in:6

Hello from the main thread!

Here’s the fix -- move ‘join’ to ‘unblock’ (i.e.
avoid waiting) while spawning new threads

Observe the new output, the thread
exeCUtion iS OUt Of Order nOW (which is expected when 10

threads are simultaneously executed, the threads are scheduled according to OS)

main() {

lambda =
std: :cout << std::this_thread::get_id() << std::endl;
std: :cout <« << X << std::endl;

b
std::vector<std:: > threads;

for(int 1=0; 1 <) {
threads.push_ba ((std::thread(lambda,i));

for(int i=0; 1 < 10; i1++){
threads[i].join();

std::cout <<

C++ 20 - std::jthread

std::jthread launches a thread
and joins the thread on

int main() {

auto lambda = [J(int x){
<< std::this_thread::get_1d() << std::endl;

1 : std::cout <<
deStrUCtlon 12 std::cout << << X << std::endl;

(@)

This may be more useful ¥

(especially for beginners) as we
don’t forget to join!

std::vector<std::jthread> threads;

| If yOU need more ContrOI on fCr(jcrrnnie;;sf|:>liJs;_ba<;:k}§<¥:jthread(lambda,'1));
when to join, then prefer 2 !
std::thread and jOin E std: :cout << << std::endl;
explicitly

(Note: This codes does the right
thing--threads are immediately
launched and not sequentially
waited upon)

74

Now that we
have the basics
of threads, I
want to focus on
a few more use
cases of threads.
I offer another
‘slower’
walkthrough of
the previous

concepts here if
you’d like to
revisit any.

o Talsofocus

more on
pitfalls of
deadlock
and
locking
strategies

Back to Basics: Concurrenc

- Mike Shah - CppCon 2021

https://youtu.be/pfIC-kle4b0?si=5SM3sdI6hKXGKi7p&t=691

Main Thread

Teams of threads

Data Parallelism

jthread1

jthread2

jthread3

Main Thread

jthread4

76

Thread Team (1/9)

e So now that we have the
idea of a ‘jthread’ let’s do a
more interesting problem

©)

Let’s spawn multiple threads
that work on some ‘shared
data’ to solve a problem

We’ll increment some values in

shared memory to start.

Thread Team (2/9)

Main Thread jthread2

Main Thread
jthread3

jthread4

From the main thread we’ll ‘spawn’ 4 threads in a
loop -- push them into a vector (like previous) and
have them work on a separate block of memory

Main Thread

Thread Team (3/9) jthread &
7
Jthread4

Below is an example of ‘shared memory’

Shared memory
(i.e. a big array)

Thread Team (4/9)

jthread2

jthread3

Main Thread Main Thread

jthread4

Each thread writes to separate indices

jthread1 e read/write this block

jthread?2 read/write this block

jthread3 read/write this block
jthreadd oemmemmmm: read/write this block

Thread Team (5/9) :

EJ std::array<int, > shared global data;
e Here is the resulting code Cirai
é’ std::memset(shared global data.data(), 0, sizeof(int)*shared global data.size());
2 AdditionWorker= [](t index, jobSize){
2 (t 1 = index*jobSize; i < (index+1) * jobSize; i++){

25 shared global data[i] += 1;

1 std::vector<std::jthread> threads;

for(int j=0; j < 5; j++){

r(i=0; 1 < 4; i++){
threads.push back(std::jthread(AdditionWorker,i,64));
}
std::cout << << threads.size() << std::endl;
std::cout << << std::endl;

45 for(t i=0; i < shared global data.size(); i++){

s{d::cout << shared _global data[i] << .

std::cout << std::endl;

RN N6 asven i b ikt o b2t PETREIN v 1 oy

Thread Team (6/9)

11 std::array< s > shared_global_data;

main() {
Std::memsji"\\"\\‘~““““““““L-~L» 11 (int)*shared global data.size())]

\

11 std::array< > shared global data;

main() {

std: :memset(shared global data.data(), ¢, sizeof(int)*shared global data.size());

Here we initialize a chunk of shared memory

AdditionWorker= [](index, jobSize)({

(i = index*jobSize; i < (index+!) * jobSize; i++){
shared global data[i] +=

Next we create a ‘worker thread’ that will execute --

observe:

e An index and ‘jobSize’ provides the ‘range’ (start and
finish) of where we’ll access the array.

o Care is taken so we do not overlap

We then do ‘5’ iterations with ‘4’ worker threads

std::vector<std::jthread> threads;

(int j=0; j < 5; j++){

(i=0; i < 4; i++){
threads.push back(std::jthread(AdditionWorker,i,o4));

/

r enan ey

std::vector<std::jthread> threads;

for(j=0; j < 5; j++){

(i=0; i < 4; i++){
threads.push back(std::jthread(AdditionWorker,1i,
}
}

)i

Thread Team (9/9)

11 std::array<int,256> shared global data;
e The program works as expected ntry ot
o 1i.e. We successfully increment each
Value ‘5’ times A std::memset(shared global data.data(), ¢, sizeof(int)*shared global data.size());
o (Printing out the 256, fives A
sequentially at the end) AdditionWorker= [](size t index, size t jobSize){
for(size t i = index*jobSize; i < (index+1) * jobSize; i++){

shared_global data[i] +=

mike@system76-pc:~/Talks/2024/french cpp user group frug$ g++ -g -W }

all -std=c++23 team.cpp -0 prog -lpthread
mike@system76-pc:~/Talks/2024/french _cpp user _group frug$ time ./pr
0g

threads.size: 20

Job completed -- in main thread and printing results

5 5::5.55 51/5.55 5555 5.5 55 5555 55,55 5:5.55 '55.55'5
5 5:5 5:5 5:5 5:5 5:5 5:5 5:5 5:5 5:5 5:5 5:5 5:5 5:5 5:5 5:5 5:5
5. 5.5 55 55 55 55 55 55 55 5:5: 55 5.5 515 55 55 55 5i:5 5
5555555555555 555:5555:555585 55555555

std::vector<std::jthread> threads;

(int j=0; j < 5; j++){

(int i=0; i < 4; i++){
threads.push back(std::jthread(AdditionWorker,i,));

5. 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 55 55 55 5 } }
555555555555555555555555555555555 1 std::cout << << threads.size() << std::endl;
5 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 54
b Bih By5 B B B 55 B h 55 Bih 5k 12
43 std::cout << << std::endl;
iz o Ei for(size t i=0; i < shared global data.size(); i++){
L Omo . 004s : std: :cout << sharedfngbalfdafa[i]'<< ;

Sys Om0.004s
18 std::cout << std::endl;

Thread Team Round 2 (1/5)

11 std::array<int, > shared_global_data;

e Great -- now let’s do a real
test on a real workload --
I’'ve modified the program 7
to now run ‘50000’ times 2 piittrtar: Uis b idndey, slonct Sisnel

. 24 { Fi= index‘jopSize; i < (index+1) * jobSize; i++){
o and .. (next Sllde) ; ; shared global data[i] +=
27 b

main() {

std: :memset(shared global data.data(), ©, zeof(int)*shared global data.size());

std::vector<std::jthread> threads;

(int j=0; i+ {

(int i=0; i < 4; i++){
threads.push_back(std::jthread(AdditionWorker,1i,64));
}

std::cout << << threads.size() << std::endl;

std::cout << << std::endl;

for(siz i=0; 1 < shared global data.size(); i++){
std::cout << shared global data[i] <<

}

std::cout << std::endl;

Thread Team Round 2 (2/5)

ii std::array<int, > shared_global_data;

e Great -- now let’s do areal iy

test on a real workload --
I’'ve modified the program

to now run ‘50000’ times

o and... (next slide)
O

mike@system76-pc:~/Talks/2024/french _cpp user _group frug$ g++ -g -wiy
all -std=c++23 team50000.cpp -0 prog -lpthread =
mike@system76-pc:~/Talks/2024/french _cpp _user_group frug$ time ./pr:

g
what(): Resource temporarily unavailable
Aborted (core dumped)

real Om0.562s
user OmO.060s
sys Om0O.667s
mike@system76-pc:~/Talks/2024/french cpp user group frug$ D

t main() {

std::memset(shared_global data.data(), O, zeof(int)*shared_global data.size());

AdditionWorker= [](size index, e t jobSize){
(t i = index*jobSize; i < (index+1) * jobSize; i++){

sﬁérediglobalidata[i] +=
}

std::vector<std::jthread> threads;

for(int j=0; i+6){

(int i=0; i < 4; i++){
threads.push_back(std::jthread(AdditionWorker,1i,64));
}

std::cout << << threads.size() << std::endl;

std::cout <<

for(size t i=0; 1 < shared_global data.size(); i++){
std::cout << shared global data[i] <<
}

std::cout << std::endl;

<< std::endl;

Thread Team Round 2 (3/5)

i std::array<int, > shared global data;

t main() {

o What is the issue? (Hint highlighted)

std::memset(shared global data.data(), 0, cof(int)*shared_global data.size());

1
1
1
|
1
1
17
1

AdditionWorker= [](size index, ze t jobSize){

{ t 1 = index*jobSize; i < (index+1) * jobSize; i++){
shared _global _data[i] +=

mike@system76-pc:~/Talks/2024/french _cpp user _group frug$ g++ -g w'J std::vector<std::jthread> threads;
all -std=c++23 team50000.cpp -0 prog -lpthread =
mike@system76-pc:~/Talks/2024/french_cpp user _group frug$ time ./pr;;
Og 35
. . o " o v 3¢ for(int i=0; i < 4; i++){
te@:;???? Cgélggrgztigmégggtiqg 32a$2i{ggig of "std::system_error’ ; threads.push_back(std::jthread(AdditionWorker,i,64));
: 3 }
Aborted (core dumped)

i 3o

std::cout << << threads.size() << std::endl;

real Omo.562s ,

user OmoO.060s 43 std::cout <<

Sys Omo.667s 44 (/£ NrTie oul ;))

mike@system76-pc:~/Talks/2024/french_cpp_user_group_frugs$ [] = e ey il el g b L R
47 }

std::cout << std::endl;

<< std::endl;

Thread Team Round 2 (4/5)

std::array<int, > shared_global_data;

What is the issue? (Hint highlighted) §
Answer: Perhaps too many threads std: :memset(shared global data.data(), 0, sizeof(int)*shared global data.size());
created on stack at once 1
m [have created 50,000%4 threads
for one process' 24 (i = index*jobSize; i < (index+1l) * jobSize; i++){
b 5 shared_global data[i] +=
e The t.hreads don’t .) ’
terminate after all, until FEE.E
‘vector’ destructor is :

main() {

AdditionWorker= [](size index, e t jobSize){

31 std::vector<std::jthread> threads;
called 2

(And that is end of For(int j=0; J < ST
program) // They will ' synchronize

threads.push_back(std::jthread(AdditionWorker,1i,64));

Note: With other thread - S
llbrarles we aware Of What 4 std::cout << << threads.size() << std::endl;
’ 11
could happen when resizing il i gl << stdizendis
containers (std::threads are 45 for(size t i=0; i < shared_global data.size(); i++){
non—Copyable Wthh IS gOOd 16 ; std::cout << shared global data[i] <<
’ 1
N . 48 d:s << d::endl;
and prevents weird behavior). Poturn @ et

Thread Team Round 2 (5/5)

-gdb-set mi-async [on
] Then load executable: file ./prog
] Then

b 37ifj>15
m Observe that ‘threads vector ‘never
shrinks!
m Note: threads are ‘moved’ instead of
copied, but we still have a large
‘move’ to do -- plus our stack of
‘functions’ potentially grows very
fast!
set scheduler-locking on
[Mode needs to be ‘on’
m This pauses all threads when one
stops -- easier to debug
display threads.size()
m Updates when we push into size
Press ‘c’ for continue a few times
call malloc_stats()
m Gives us some idea of memory
allocations (at least for the heap
allocations with threads)

1 std::array<int,

> shared global data;

main() {

std::memset(shared_global data.data(), O,

AdditionWorker= [](index,

izeof(

t jobSize){

{ i = index*jobSize; i < (index+1) * jobSize;

shared _global data[i] += 1;

std::vector<std::jthread> threads;

(int j=0; j < HISE S OB

for(int i=0; i < 4; i++){

threads.push_back(std::jthread(AdditionWorker,1i,

}

std::cout <<

std::cout <<

for(siz i=0; 1 < shared global data.size(); i++){

std::cout << shared global data[i] <<
}
std::cout << std::endl;

i

'

i++){

));

<< threads.size() << std::endl;

t)*shared_global data.size());

<< std::endl;

Thread Team Fixed (1/2)

std::cout <<

r(i=0; i < shared_global data.size(); i++){
std::cout << shared_global _data[i] << :

}

std::cout << std::endl;

i

std::array<int, > shared_global _data;
main() {
std::memset(shared_global data.data(), ©, sizeof(int)*shared global data.size());
AdditionWorker= [](size t index, jobSize){
(siz i = index*jobSize; i < (index+1) * jobSize; i++){
5 shared_global data[i] += 1;
}
}i
for(i_0. TR
33 I std::vector<std::jthread> threads; I
r(int i=0; i < 4; i++){
7 threads.push _back(std::jthread(AdditionWorker,i,64))
3 }
}

<< std::endl;

Thread Team Fixed (2/2)

() a O) O) .- .
2acC avallaple O C
Opelc O C
-
O /\ a > > a
dicates 8mb o 5 o
O ele a2’ TO ore O

mike@system76-pc:~$ cat /proc/sys/kernel/threads-max
512511

mike@system76-pc:~$ ulimit -s

8192

mike@system76-pc:~$ D

11 std::array<int,

> shared_global _data;
t main() {

std::memset(shared global data.data(), 0, sizeof(i

AdditionWorker= [](: t index, jobSize){
(

sﬁéred‘global_data[i] = 1;

i = index*jobSize; i < (index+1) * jobSize; i++){

)*shared global data.size());

}
}:
for(j=0; j < i i) o

std::vector<std::jthread> threads;

r(int i=0; i < 4; i++){
threads.push _back(std::jthread(AdditionWorker,i,64));

}

}

std::cout <<

r(size i=0; i < shared_global data.size(); i++){
std::cout << shared_global _data[i] << :

}
std::cout << std::endl;

i

<< std::endl;

Can I launch 50,000 threads with my limit?

e Searching: nl /etc/systemd/system.conft
o I'm allowed to have 15% of my maximum allowable threads allocated to a process on Ubuntu
22.04
o (This seems reasonable -- | could for instance launch 25,000 threads no problem -- probably
way too many though!)
e Probably not a good idea to launch this many on your desktop CPU in 2024
o 2 threads per 1 core is a ‘metric’ used by some
m Threads have a cost to start and to join
m Generally this is considered ‘costly’

e This brings up two interesting ideas

o The first is whether ‘sequential’ execution is actually better in some cases
o The second is -- how can we avoid ‘recreation’ of threads
m i.e. the idea of a thread pool

93

Sequential Execution is Sometimes Better

Sequential (1/2) :

11 std::array<int > shared global data;

e Comparing the sequential
performance

o Get the correct answer (useful
for unit testing!)

main() {

std: :memset(shared global data.data(), izeof(int)*shared global data.size())

AdditionWorker= [](si t index, ¢ jobSize){

Hmm, seems to run quite fast! 2 i
Less complicated code even

4 i = index*jobSize; i < (index+1) * jobSize; i++){
shared_global data[i] += 1;

mike@system76-pc:~/Talks/2024/french_cpp_user_group_frug$ g++ -g -Wall -std=c++ 7
23 sequential.cpp -o prog -lpthread SEL AR 5 = 4 j‘++) {
mike@system76-pc:~/Talks/2024/french_cpp_user_group frug$ time ./prog
Job completed -- in main thread and printing results
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5
0000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50 € ; : ¢ .
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 500 2 r(int i=0; i < 4; i++){
00 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000 34 AdditionWorker(i,64);
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000

50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5
0000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 500
00 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000 :
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 ¥ o

50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 std::cout << << std::endl
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5 L

0000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50 11 il ; 3

000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 500 : (si 1597 L = sharedfglobalfda?a.51ze(), i++){

00 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000 std::cout << shared global data[i] << :

0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5 + std::cout << std::endl;

0000 50000 50000 50000 50000 50000 % return 0;

real 0mo.028s
| user 0mo.027s
sys 0m0.000s
mike@system76-pc:~/Talks/2024/french_cpp_user_group_frugs$ D

mike@system76-pc:~/Talks/2024/french_cpp_user _group_ frug$ time ./prog
Job completed -- in main thread and printing results

° 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
Sequentlal (2/2) 000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
In my benchma]_‘l{s Why 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
. 0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
doeS the Sequentlal 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
. 0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
benchmarl§ Wln? 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50

000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000

o Less time spinning up real Oml.567 —
threads wseromo.304:| 4 threads, constantly spinning up new threads

RE@SYSLEeM/0-pC:~/ lalks/ 024/ Trench_cpp_user_group 1rugs g++ -g -Wall -std=c++Z3 sequential

. .Cpp -0 prog -lpthread
®) Better CaChe locallty mike@system76-pc:~/Talks/2024/french_cpp_user _group_ frug$ time ./prog

Job completed -- in main thread and printing results

50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000

real 0m0.028s

ver emo.027¢| 1 thread sequentially calling accumulate function

False Sharing

(Aside) How many threads to work together? (0/2)

Quad-core Processor

e We can query with

std::thread::hardware concurrencv() a Core 0 Core 1 Core?2 Core 3
‘eood’ number of threads for our
hardware. L1 L1 L1 L1

e We also have to consider our ‘cache’

o Basically -- we want to access (for my specific
architecture) no more than 64 bytes on
independent threads. L3

m Accessing more than that ‘shares’ data
that must be evicted at least to the L3
cache, and then ‘kept coherent’ amongst
other cores. Main Memory

m This creates a great slow down!

o https://devblogs.microsoft.com/oldnewthing/2 Dl tescachcal ol o 229042 e AS S0 2513112 TG el
0230424-00/7?p=108085

o https://en.cppreference.com/w/cpp/thread/ha
rdware destructive interference size

L2 L2

98

https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
https://devblogs.microsoft.com/oldnewthing/20230424-00/?p=108085
https://devblogs.microsoft.com/oldnewthing/20230424-00/?p=108085
https://en.cppreference.com/w/cpp/thread/hardware_destructive_interference_size
https://en.cppreference.com/w/cpp/thread/hardware_destructive_interference_size
https://www.researchgate.net/publication/322994264/figure/fig4/AS:599034075029513@1519832261760/A-three-level-shared-cache-quad-core-architecture.png
https://www.researchgate.net/publication/322994264/figure/fig4/AS:599034075029513@1519832261760/A-three-level-shared-cache-quad-core-architecture.png

e Okay -- so I made the fix in regards
to accessing ‘64 bytes’ (16 ints, 4
bytes each) per thread

o But we’re still slower!

m (In fact, ~10 times slower now than
previous threads example, and
several orders of magnitude slower
than simple sequential code)

(Brilliant talk by Scott Meyers on this by the way!
https://www.youtube.com/watch?v=WDIkqP4JbKE)

11 std::array<int,256> shared global data;

helper(){
4 std::cout << std::thread::hardware_concurrency() <<

15 }

main() {

helper();

std: :memset(shared global data.data(), ©, z {)*shared_global data.size());

AdditionWorker= [](index, jobSize){

i = index*jobSize; i < (index+1) * jobSize; i++){

(
shared_global_data[i] += 1;

B EadRt

std::vector<std::jthread> threads;

(i=0; i ;i) {
threads.push_back(std::jthread(AdditionWorker,i,16));

}

std::cout << << std::endl;

real Oml15.204s

user Oml.995s
SYS Oml18.234s 99

https://www.youtube.com/watch?v=WDIkqP4JbkE

e Note: Slight confession -- the
amount of work in our ‘thread’is SO | ——————
trivial we should never have used {{ S EG_G_—GS———
threads in the first place

o BUT --T1 have to introduce these ideas to :
you Somehow in a Slideshow :) Adc(iitionWorkeﬁ [1(index, jobSize){

main() {

helper();

std: :memset(shared global data.data(), ©, z {)*shared_global data.size());

jobSize; i < (index+1) * jobSize; i++

i = index*j
shared_global_data[i] += 1;

B EadRt
std::vector<std::jthread> threads;

(i=0; 1 < 16; i++){
threads.push_back(std::jthread(AdditionWorker,i,

<< std::endl;

Om15.204s

Oml.995s

(Brilliant talk by Scott Meyers on this by the way! 100
https:/www.youtube.com/watch?v=WDIkqP4JbKE) u 0 o l 8 2 2 3 4 S

https://www.youtube.com/watch?v=WDIkqP4JbkE

Thread Pool

Removing issue of thread creation

101

Thread Pools

e A thread poolis a ‘pool’ of threads that are allocated at startup
o The ‘pool’ of threads is long lived, and ‘grab’ work as needed.

e We’ll need to however think about some way to otherwise ‘keep our

thread alive’
o Recall that threads just start executing otherwise when they are invoked.

102

Thread Pools

‘ std::array<int, > shared global data;

14 template <siz threadcount>
A first attempt points to some ¢ o H SatETN

ThreadPool(std:: function<y

sort of ‘struct’ like on the right -- Y ok = Sl
19 }
the example works the same , . .
. void executeAll(size t iterations, ze t jobSize){
Maybe we can just wrap the code 2 lge £ icounls =

and use ‘move semantics’ = SRRt & Aterations)y
o This works -- and we get similar e TARIRIEE b Aofe L o FaeHtea L
performance when Compared to our 2 threads[i] = std::jthread(command, i, jobSize);
. . 29 }
first data-parallel working example ¢ count++; i
But we’ve not yet solving our } :
problem of thread creation -- but we D D T opp—
are getting ClOSQI', and getting some 35 std::array<std::jthread, threadcount> threads;

encapsulation. T e s
But we can do better 48 au AddltmnWorkerm ize t index, size t jobSize){

r(e t 1 = index*]obSlze i < (index+1) * jobSize; i

shared _global data[i] +=
}

Om2.262s =
Om0O.344s Juto threadPool = ThreadPool<4>(AdditionWorker):;

Om2.710s

threadPool.executeAll(,64);

Condition Variables

Introducing Condition Variables

e Condition variables
o Allows us to keep threads alive (without having to respawn new threads, which is
expensive)
o Then we can dispatch work to worker threads periodically in order to do work on
a subset of data.

e This can be used as a ‘signaling pattern’

e (Condition variables

o Work with a ‘shared memory’ variable (e.g. use a boolean as a flag)
m Typically that shared memory is protected by a mutex
m You must use shared memory with the mutex
m mutex is automatically acquired by the worker.

105

Condition Variables Example

Y A Condition Variable 3.110WS : r:mutex shared lock between producerconsumer;
::condition variable cv;
us to otherwise ‘signal’ from | o0 i e 4 o

one function to the other
when there is work to be

done. Observe that we need three
o A common pattern is the parts: -
producer/consumer pattern z(])ur?eexl;orm of synchronization (a
o When data is ‘produced’ then a a condition variable
signal is made that work is ready a ‘variable’ (i.e. ready)
to be acquired and processed by
a ‘consumer’ thread.

106

Condition Variables Example (producer)

The job of the producer
is to do some work on a

protected piece of data

o (Note std::lock_guard with
locking safely through
RAII)

It’s worth noting also at
this point that our
‘consumer’ will be
blocked until ‘notified’
(See notify_all)

; ;

15 std::mutex shared lock between producerconsumer;
16 std::condition variable cv;

17 | ready {)3

18 std::queue<int> shared queue;

id producer() {
t i=0; 1 <'§5; i++)
:this thread::sleep for()

std::lock guard<std::mutex> lk {shared lock between producerconsumer};

shared queue.push(i);

cv.notify all();
}

std::lock guard<std::mutex> 1k {shared lock between producerconsumer};
ready = 5

}
cv.notify all();

Condition Variables Example (consumer)

e Here’s the consumer side
o The consumer ‘diligently awaits’ to acquire the lock
o The ‘wait’ portion otherwise is where we awaken when we are notified by the
producer.
m We won’t get here until we otherwise acquire the lock anyway -- so that
remains the blocking operation

i std: :mutex

shared lock between producerconsumer;

16 std::condition variable cv;

; 17 | ready { }:

D 18 std::queue<int> shared_queue;
17 static void consumer() {
18 hile (!'ready) {
19 std::unique lock<std::mutex> 1 {shared lock between producerconsumer};
50 cv.wait(l, [] { return !shared queue.empty() || ready; });

std::cout << << shared queue.front() << std::endl;

shared queue.pop();

Troubleshooting and Debugging

Let's see the program run!

109

Live GDB: Conditional Variable Demonstration

e Build Command
o g++-g-Wall -std=c++23 simple_cv.cpp -0 prog -Ipthread

e EXecute
o ./prog
e Debug

o gdb --tui./prog
o (Can try ‘info threads’) to see the threads
o (Still a good idea to setup ‘set scheduler-lock on’ as well)

110

Live Live Recorder and UDB: Demonstration

e Run and create a recording from Undo -- if you prefer instead of
gdb

o /home/mike/Downloads/undo-7.2.1/live-record ./prog
o Then use ‘rr’ or ‘udb’ to replay
m /home/mike/Downloads/undo-7.2.1/udb
prog-3008963-2024-05-14T10-37-40.324.undo
e Try ‘start’ ‘layout src’ and then using ‘n’ to step through
e ‘info threads’ and other GDB knowledge works as well
o Neat way to debug these things is with ‘live recorder’
m https://docs.undo.io/UsingThel.iveRecorderTool.html

111

https://docs.undo.io/UsingTheLiveRecorderTool.html

Condition_variable with thread pool -- what’s the point?

e We went from a data parallel problem to a ‘thread pool’

o The ‘data parallel’ problem may or may not need to reuse threads -- perhaps
crunching numbers is just fine
o However -- it’s useful to know how to reimplement some of these systems.

e The point of the mechanism (i.e. a conditional variable) is to
understand this ‘signal pattern’ is going to be we now have a

mechanism to ‘block’ our threads when executing
o They can then ‘pick up’ work, or be assigned new work when needed.

112

Thread Pool Implementation

A complete implementation
for a thread pool can be

found here

o Ifounditis a good example of
combining these ideas of
‘submitting a task’ to a pool,
and reusing threads

o Note: This takes us into
another corner of the
language with promises,
futures, and packaged_tasks.

author Barak Shoshany | DOI| 10.1016/j.softx.2024.101687 | arXiv 2105.00613 T

vcpkg v4.1.0 | wrapdb 4.1.0-1 Open in Visual Studio Code

BS::thread_pool: a fast, lightweight, and easy-to-

use C++17 thread pool library

By Barak Shoshany

Email: baraksh@gmail.com

Website: https://baraksh.com/
GitHub: https://github.com/bshoshany

This is the complete documentation for v4.1.0 of the library, released on 2024-03-22.

« Introduction
o Motivation

o Overview of features

o Compiling_and compatibility

7] EET

https://qgithub.com/bshoshany/thread-pool

113

https://github.com/bshoshany/thread-pool

Some High Level Takeaways

e Revisiting the gaming example -- we
may have something that is

visualized like this
o ‘Updates’ happen in highly parallel
fashion
m Updates can be arbitrary, so need
some sort of ‘task’ or ‘thread’ pool
m Sync points (purple bars) are
condition variables -- or otherwise
other primitives (e.g. barrier)

e Thread errors take some thought
o Think about the problem for a bit
o Utilize tools like live-recorder to replay
the output of program.
m Concurrent programs are
non-deterministic, and hard to
reproduce!

114

More Resources for Going Further

Operating Systems: Three Easy Pieces

Free book chapters on concurrency.
https://pages.cs.wisc.edu/~remzi/OSTEP/

116

https://pages.cs.wisc.edu/~remzi/OSTEP/

The Little Book of
Semaphores

More Thread Patterns/Ideas

by Allen B. D
e https://greenteapress.com/wp/se |

map ho res/ Download The Little Book of Semaphores in PDF.

The Little Book of Semaphores is a free (in both senses of the
word) textbook that introduces the principles of synchronization
for concurrent programming.

In most computer science curricula, synchronization is a module
in an Operating Systems class. OS textbooks present a standard
set of problems with a standard set of solutions, but most stu-
dents don’t get a good understanding of the material or the abil-
ity to solve similar problems.

The approach of this book is to identify patterns that are useful
for a variety of synchronization problems and then show how
they can be assembled into solutions. After each problem, the
book offers a hint before showing a solution, giving students a
better chance of discovering solutions on their own.

https://greenteapress.com/wp/semaphores/
https://greenteapress.com/wp/semaphores/

Further resources and training materials

mike shah concurrency

e Playlist on C++ concurrency on .
YouTube: - o Q

o https://www.youtube.com/playlist?] . O e
ist=PLvv0ScY6vfd ocTP2ZLicggKnv Concurrency

=

Mike Shah [Concurren, a
00CXM
L 14 videos 76,385 views Last updated on Jul 17,2023
. . . » 5 Launching multiple std::thread in C++ | Introduction to Concurrency in Cpp
e Slides from this talk will be ' B

L]
m 1 h r 1 A series of videos to help users get 4 z jthread std::jthread in C++ 20 | Introduction to Concurrency in Cpp
. started with C++ concurrency in modem @ o .

cpp. Discussion of thread-based

concurrency, locks, async, promises,

futures, and atomics at a minimum will be

discussed. std::mutex and preventing data races in C++ | Introduction to Concurrency in Cpp

Mike Shah « 7.

118

https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM

Further resources and training materials

More C++ Software Design

Videos:

o https:// www.youtube.com/plavylist?]l
ist=PLvv0ScY6vidowB{lFof6ynlDQua

eKYzyc

Design Patterns - Command Pattern Explanation and Implementation in C++

Mike Shah + 12K views * 2 years ago

Design Patterns - Singleton Pattern | Explanation and Implementation in C++

Mike Shah + 4.4K views * 2 years ago

Design Patterns - Factory Method Pattern Explanation and Implementation in C++

Mike Shah + 5.6K views * 2 years ago

Design Patterns - Factory Method Pattern Adding More Power to Count Allocated Objects
in C++

Mike Shah + 1.7K views * 2 years ago

Design Patterns - The Extensible Factory Pattern in C++ | Register Objects at Runtime

Mike Shah + 2K views * 2 years ago

Design Patterns - Iterator Pattern Explanation and usage with STL in C++

Mike Shah + 1.6K views * 2 years ago

The Observer Design Pattern in C++ - Part 1 of n - A simple implementation

Mike Shah + 3.8K views * 11 months ago

The Observer Design Pattern in C++ - Part 2 of n - Extensibility and Abstraction

Mike Shah + 1.7K views + 11 months ago

https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc

Further resources and training materials

Some useful talks on concurrency

GCAP 2016: Parallel Game Engine Design - Brooke Hodgman
o https://www.youtube.com/watch?v=JpmKo0zu4Mts

The MAW: Safely Multithreading the Deterministic Gameplay of
'Age of Empires IV'

o (Slideshow below -- talk may be available on YouTube or with GDC vault access)
o https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the

Multithreading the Entire Destiny Engine (GDC 2015)

o https://www.youtube.com/watch?v=v2Q zHG3vqg

Sean Parent: Better Code Concurrency
o https://www.youtube.com/watch?v=zULU6Hhp42w

120

https://www.youtube.com/watch?v=JpmK0zu4Mts
https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the
https://www.youtube.com/watch?v=v2Q_zHG3vqg
https://www.youtube.com/watch?v=zULU6Hhp42w

Merci beaucoup C++ FRench User Group

pour le invitation!

Fundamentals of

with Mike Shah

Social: @MichaelShah

Web: mshah.io
Courses: courses.mshah.io
19:00 - 21:00 Tue, May 14, 2024 €3 Voulube
~60 minutes | Introductory/Advanced www . youtube.com/c/MikeShah

Audience http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

