
Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice

1

Please do not redistribute slides/source without
prior written permission.

http://www.mshah.io

Fundamentals of Concurrency
Threads, Pools, and Patterns

-- in C++
with Mike Shah

19:00 - 21:00 Tue, May 14, 2024

~60 minutes | Introductory/Advanced
Audience 2

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

What you’re going to learn today

● Recap of #include <thread>
○ std::thread, std::jthread
○ Data Parallel Problem (no

synchronization)
● Some Basic Patterns with

Threads
○ Thread Pools
○ Producer/Consumer

● How to observer behavior of
threaded programs

○ Using gdb and udb

Pretend these seats are filled :)
https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

3

https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern
University in Boston, Massachusetts.

○ I love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

○ My research is divided into computer graphics (geometry) and
software engineering and computer systems.

● I am available for contract work or technical training
on Modern C++, DLang, Concurrency, OpenGL, and
Vulkan projects

● Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

4

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code for the talk

● Located here:
https://github.com/MikeShah/Talks/tree/main/2024/french_cpp_user_group_frug

5

https://github.com/MikeShah/Talks/tree/main/2024/french_cpp_user_group_frug

Abstract

With the addition of <thread> in C++ 11, programmers now have an interface for
launching a std::thread(or std::jthread) with relative ease. But how do we use
threads effectively? Often we hear about scary things like ‘deadlock’ or ‘dataraces’,
and you are further warned to be very cautious with threads, while simultaneously
told that ‘threads are the answer to performance’. In this talk, we will go over the
fundamentals of threads, and approach your ‘second day’ with std::thread, and
showcase practical examples of how to use threads and use them safely. We’ll cover
some ‘pitfalls’, but the goal is to leave this talk understanding more about threads so
we can be more comfortable eventually ‘architecting software’ using multiple threads.
We’ll analyze and even investigate how to implement thread-pools,
producer-consumer, and other common patterns used in threading and found in the
real world. After leaving this talk, you should feel more comfortable to try your own
experiments, and consider architecturing your software with threads to maximize
your performance.

The abstract that you read and enticed
you to join me is here!

6

Age of Empires 4

7(Disclaimed: I did not work on the game, but it would have been cool if I did!)

Computers are Incredibly Powerful (Age of Empires IV)

8

● I’m very fascinated by how
powerful our computers
are!

● My fascination is often in
game programming

○ Look at the hundreds of
individual AI agents running
around!

○ The physics simulation of a
crumbling castle

○ The beautiful graphics and
animations

● There’s a lot of interesting
‘stuff’ being computed
every millisecond!

Age of Empires 4 https://media2.giphy.com/media/l1mV0tBosR61ac3m1i/200.gif

https://media2.giphy.com/media/l1mV0tBosR61ac3m1i/200.gif

Engineering Challenges

9

● Now of course -- there’s lots of
interesting engineering going on

○ Much of that engineering is in the name of
performance

● The image to the right is a full talk
about the ‘multithreading’ that was
needed to enable the previous
animation you saw from Age of
Empires IV.

○ (Notes included below for some context)
● In short -- today we’re going to want

to learn a bit about the primitives
that enable us engineer performant
systems

https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the

https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the

Serving Coffee
(2 lines are better than 1)

10

(and sequential) -- added by Mike

Sequential Software Construction (1/4)

11

● We learn software construction
writing programs that execute
one instruction at a time

○ i.e. We have one main ‘thread of
execution’ in our process running

○ Note: We use the terms “serial” or
“sequential” to describe this execution

Instruction
E

xecute

...

Instruction

E
xecute

Process

Sequential Software Construction (2/4)

12

● We can abstract our visualization,
and show the call stack.

○ (One function calling the other, with
the indentation indicating the call
stack)

Process

main

Foo()

Bar()

Baz()

E
xecute

Sequential Software Construction (3/4)

13

● We can abstract our visualization,
and show the call stack.

○ (One function calling the other, with
the indentation indicating the call
stack)

● As you might imagine -- having
two or more streams of execution
could speed things up!

○ Or otherwise -- just make solving a
problem more easy to reason about

Process

main

Foo()

Bar()

Baz()

E
xecute

Another logical
stream of execution

Foo()

Bar()

Baz()

E
xecute

Sequential Software Construction (4/4)

14

● The motivation for allowing a program to have ‘2’ (or more) execution paths is exactly what is shown
on the illustration on the left with ‘coffee machines’ (which one would you line up in?)

○ I think we all understand the idea that if we have two lines we can do things faster
■ (top picture -- perhaps two people will always have their wallets ready, rather than only the

first person in the line to save ‘overall time’)
■ (middle picture -- two coffee machines, should be about twice as fast service)
■ (bottom picture - Slowest line)

Process

main

Foo()

Bar()

Baz()

E
xecute

Another logical
stream of execution

Foo()

Bar()

Baz()

E
xecute

Concurrency
Definitions

15

Parallelism vs Concurrency (programming context) (1/3)

Concurrency is often used interchangeably with
parallelism--so let’s separate those two terms.

1. Concurrency Definition: Multiple things
can happen at once, the order matters, and
sometimes tasks have to wait on shared
resources.

2. Parallelism Definition: Everything happens
at once, instantaneously

16

Parallelism vs Concurrency (programming context) (2/3)

Concurrency is often used interchangeably with
parallelism--so let’s separate those two terms.

1. Concurrency Definition: Multiple things
can happen at once, the order matters, and
sometimes tasks have to wait on shared
resources.

2. Parallelism Definition: Everything happens
at once, instantaneously

17

Parallelism vs Concurrency (programming context) (3/3)

Concurrency is often used interchangeably with
parallelism--so let’s separate those two terms.

1. Concurrency Definition: Multiple things
can happen at once, the order matters, and
sometimes tasks have to wait on shared
resources.

2. Parallelism Definition: Everything happens
at once, instantaneously

18

Both concurrency and parallelism can be utilized to
yield better software construction -- often times
meaning better performance.

(Another View) Concurrency versus Parallel

● Concurrency -- There are multiple flows of control on a
(potentially) shared piece of data

○ More interested in structuring a problem when writing concurrent software
● Parallelism -- This is achieved by a hardware mechanism where

operations are done simultaneously.
○ The operations are potentially related
○ You are doing many things at once.
○ More interested in executing operations fast

● Both ideas often motivated by increased performance
○ The potential for more tasks to happen at once can thus increases performance

■ Typically if we have multiple cores on our machine
■ Sometimes concurrency/parallelism available on other pieces of hardware

● e.g. disk fetching memory can be a non-blocking operation
(asynchronous) until data is needed (concurrency)

● e.g. disk fetching multiple pieces of memory at once (parallelism)

19

20

“Performance is the currency of computing.

21

“Performance is the currency of computing. You
can often “buy” needed properties [of software] with
performance” - Charles Leiserson

https://en.wikipedia.org/wiki/Charles_E._Leiserson

The Free Lunch is Over - Herb Sutter (1/2)

● Question to Audience:
○ How many folks have read

this article written by Herb
Sutter?

22

http://www.gotw.ca/publications/concurrency-ddj.htm

http://www.gotw.ca/publications/concurrency-ddj.htm

The Free Lunch is Over - Herb Sutter (2/2)

● Question to Audience:
○ How many folks have read

this article written by Herb
Sutter?

○ The reality is -- our CPU
architectures will continue
to adopt multicore
architectures

■ We don’t (as much) get
‘free performance’
from CPU speeds
anymore

○ Why? Next slide!

23

http://www.gotw.ca/publications/concurrency-ddj.htm

http://www.gotw.ca/publications/concurrency-ddj.htm

Computer Software and Architecture Trends
A few basic ideas and ‘laws’

24

Three long held Software Trends

25

1. Multicore hardware architecture will continue to shape how we
write software

2. Cores will come in different form factors (e.g. smaller)
a. (Or even a mix of small and large cores on a single processor)

3. Processing speed (GPU or CPU) will likely continue to outpace
‘reading speed’ (i.e. I/O from disk)

Moore’s Law (1/2)

26

● Around 1965 Gordon
Moore predicted the
number of transistors
would roughly double
every 18-24 months

○ And largely this held true!

"The number of transistors incorporated in a chip will approximately double
every 24 months."

--Gordon Moore, Intel co-founder

Moore’s Law (2/2)

27

● Around 1965 Gordon
Moore predicted the
number of transistors
would roughly double
every 18-24 months

○ And largely this held true!

○ The problem is as transistors get closer and closer
(i.e. transistor density increases)
■ More heat is generated
■ Faster clock speeds demand more power
■ And memory speeds did not keep up with the

rate at which we can compute

"The number of transistors incorporated in a chip will approximately double
every 24 months."

--Gordon Moore, Intel co-founder

Dennard Scaling (1/3)
"The number of transistors incorporated in a chip will approximately double

every 24 months."

--Gordon Moore, Intel co-founder

http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/2010-11/TechnologicalSingularity/pageviewa478.html?file=forfeasibility.html

28

• Physically (on the atomic scale)
transistors are packed very
tightly together

• Heat becomes a problem
• Energy consumption increases

• (i.e. Dennard Scaling)

http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/2010-11/TechnologicalSingularity/pageviewa478.html?file=forfeasibility.html
https://en.wikipedia.org/wiki/Dennard_scaling

Dennard Scaling (2/3)
"The number of transistors incorporated in a chip will approximately double

every 24 months."

--Gordon Moore, Intel co-founder

http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/2010-11/TechnologicalSingularity/pageviewa478.html?file=forfeasibility.html

29

• Physically (on the atomic scale)
transistors are packed very
tightly together

• Heat becomes a problem
• Energy consumption increases

• (i.e. Dennard Scaling)

● So the hardware industry has adapted
(effectively keeping Moore’s Law
accurate)

● We have more smaller cpus (i.e., cores)
on our machines

http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/2010-11/TechnologicalSingularity/pageviewa478.html?file=forfeasibility.html
https://en.wikipedia.org/wiki/Dennard_scaling

Dennard Scaling (3/3)
"The number of transistors incorporated in a chip will approximately double

every 24 months."

--Gordon Moore, Intel co-founder

http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/2010-11/TechnologicalSingularity/pageviewa478.html?file=forfeasibility.html

30

• Physically (on the atomic scale)
transistors are packed very
tightly together

• Heat becomes a problem
• Energy consumption increases

• (i.e. Dennard Scaling)

● So the hardware industry has adapted
(effectively keeping Moore’s Law
accurate)

● We have more smaller cpus (i.e., cores)
on our machines

● So--does our hardware support
concurrency?

● Yes! Each core can be working on a
separate task. (Note: A single core can also handle concurrency)

http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/2010-11/TechnologicalSingularity/pageviewa478.html?file=forfeasibility.html
https://en.wikipedia.org/wiki/Dennard_scaling

Another problem--Processor Memory Gap (1/2)

31

● The processor memory
gap in particular
continues to grow!

○ So even as cpus get faster,
other technologies cannot
keep up.

○ This tends to make our
applications I/O bound

■ (i.e. we are waiting on
the data to be
read/written from
memory)

Another problem--Processor Memory Gap (2/2)

32

● The processor memory
gap in particular
continues to grow!

○ So even as cpus get faster,
other technologies cannot
keep up.

○ This tends to make our
applications I/O bound

■ (i.e. we are waiting on
the data to be
read/written from
memory)

Today we mitigate the problem in a relatively simple
way from a hardware perspective--utilize more cores

(From an engineering perspective: we want to fetch or
be fetching data concurrently to keep our cores busy)

Concurrency
(One more time)

Often defined as a “lightweight process”

33

Concurrency -- Is it worth it?

34

● There is one other law that I want to briefly introduce on the next
slide (Amdahl's Law)

● In short -- it tries to answer the question of
○ “Can I split up my software into different jobs that could execute either

concurrently or in parallel”
○ “And if I go through that effort -- will I get a reasonable speedup”

■ (i.e. How ‘serial’ is my program)

(Note: There are other questions to ask and other variants of Amdahl’s law:
https://accu.org/journals/overload/28/157/teodorescu_2795/)

https://accu.org/journals/overload/28/157/teodorescu_2795/

Amdahl’s Law

● Performance (execution speed)
● But how much performance?

s = speedup of task that benefits from improved resources
p = portion of execution time benefiting from improved speedup

https://en.wikipedia.org/wiki/Amdahl%27s_law
Applied example: http://web.cs.iastate.edu/~prabhu/Tutorial/CACHE/CompPerf.pdf

https://en.wikipedia.org/wiki/Amdahl%27s_law
http://web.cs.iastate.edu/~prabhu/Tutorial/CACHE/CompPerf.pdf

(Aside: Some parallelism for free (implicit parallelism))

● CPU Pipelining is an example
of parallelism we typically get
for free

○ (i.e. implicit parallelism)
● Potential compiler

optimizations to automatically
vectorize code.

36

https://s0.stackpointer.io/wp-content/uploads/2009/02/pipelining.png

https://s0.stackpointer.io/wp-content/uploads/2009/02/pipelining.png

(Aside: Some parallelism not for free (explicit) parallelism)

● Using the GPU
○ Whether CUDA or OpenCL for

general purpose GPU
programming

○ Or perhaps a shader language
like GLSL or HLSL

● SIMD Instructions
○ Our SSE or AVX instructions

37

Threads
(i.e. “lightweight processes”)

Often defined as a “lightweight process”

38

The Necessity of Concurrency

● In general, concurrency (like parallelism) is used because it is
necessary for a system to function.

○ Concurrency
■ Real world concurrency examples

● e.g. an orchestra, a subway transit system, cars at a traffic stop
■ Computer Science examples

● e.g. A memory allocator, File I/O, Network requests (awaiting data)
● e.g. A server trying to handle millions of users

○ Parallelism
■ Real world example:

● Highway with multiple lanes, multiple elevators in an apartment all
going up

■ Computer Science example
● fragment shader in a computer game running in parallel so we can

render at 60 FPS

39

(Live Concurrency Example)

40

● (Trains are a great example of concurrency
and parallelism by the way)

● (One of my favorite parts of Paris is taking
the trains everywhere)

Note: Both ‘threads’ share the same address space
(i.e. they can call same functions)

Concurrency Mechanism - Thread

41

● One mechanism for achieving
concurrency is a ‘thread’

○ A ‘thread’ allows us to execute two
control flows at the same time

○ The ‘main thread’ is where our
program starts

■ We may then have 1 or more
additional threads:

● executing a block of code
● executing other functions
● And overall--sharing the

same code, and the same
data

○ (all while our main
thread coordinates
with this thread)

main

Foo()

Bar()

Baz()

E
xecute

func()

func2()

Bar()

Baz()

E
xecute

(Process)
The Main thread

Spawn 1
Additional thread

What is a thread? (1/2)

42

● A ‘thread’ is often defined
as a ‘lightweight process’

● A thread has its own
‘thread-control block’
with:

○ A thread id (TID)
○ A its own logical control flow

■ (e.g. instruction pointer)
○ Its own stack for local

variables

Figure from: Computer Systems a Programmer's Perspective 3rd Edition

What is a thread? (2/2)

● 1 Process (i.e. your
application) can have
many threads:

○ Each thread shares the same
code, data, and kernel
context

○ But each thread can execute
separately within the same
process (i.e. address space)
independently.

43

Figure from: Computer Systems a Programmer's Perspective 3rd Edition

(Aside: Thread vs Process -- What’s the difference?)

44

● A ‘process’ can contain multiple threads
○ Threads exist within the process

● The advantage of threads is that they require fewer system
resources

○ Organizing a group of threads to ‘cooperatively’ work together is likely cheaper
than organizing multiple processes to work together

● Threads can be scheduled (e.g. by priority, round robin, etc.), and
usually your thread API provides often provides some control over
this.

■ https://www.ibm.com/docs/en/aix/7.3?topic=threads-thread-scheduling

https://www.ibm.com/docs/en/aix/7.3?topic=threads-thread-scheduling

When to use threads

● Heavy Computations
○ Use threads to work on a heavy computation

■ The most common case is actually using threads on
your GPU for graphics

■ GPUs have 100s or 1000s of threads that are good for
massively parallel tasks.

● (You could also use things like CUDA to take
advantage of your graphics hardware)

○ You may need to use a series of threads to otherwise
resolve complex computations on your CPU where
decisions may need to be made.

● Using threads to separate work
○ Gives performance (Same as above)
○ But also simplifies the logic of your problem

● (If it’s useful -- you can visualize ‘threads’ like
workers being hired in a factory, ideally working
together to solve some problem, and balancing the
right number of helpers)

45

Figure from: Computer Systems a Programmer's
Perspective 3rd Edition

(Aside) The term ‘thread’

46

● There’s some confusion when it comes to the term ‘thread’
○ Operating system-thread

■ Also called a ‘kernel thread’ [link]
■ These are threads that the operating system gets to schedule and assign to do work.

● Number of kernel threads != number of CPU cores
● But there are some number of kernel threads

○ user-space threads
■ These are what we ‘spawn’ from a process
■ Operating system may assign a user-thread to be run on a kernel thread (i.e. we may

on some architectures think of this as a 1:1 model)
○ GPU threads

■ Perhaps many grouped up together to do some computation in a ‘thread block’
■ Usually 100s or 1000s of these ‘small threads’ executing a ‘kernel’ (usually a small

program) or ‘shader’ (for graphics)
● These are usually meant for ‘data parallel’ computations

https://www.ibm.com/docs/en/aix/7.3?topic=environment-understanding-kernel-threads

Threads in Modern C++
The std::thread - Since C++11, we have a standard interface to threading

47

Thread Libraries

48

● Before C++11/14/17/20/23, there
existed threading libraries with
different semantics

○ Libraries like “Boost”, Intel “Thread
Building Blocks”, or “pthread” were
used

■ Perhaps you have used pthread at
least in C

■ (std::thread I believe is
implemented with pthread most
posix systems)

● Typically today I would personally
recommend using the standard C++
threading library for portability
reasons as the default choice.

49

We actually have a
good number of
primitives (mostly
low level) for
concurrency
support.

Understanding how
to use them is part
of the goal of
today’s talk.

#include <thread>

50

51

https://en.cppreference.com/w/cpp/thread/thread

https://en.cppreference.com/w/cpp/thread/thread

Thread Example - Launching a thread (1/2)

● #include <thread>
○ std::thread

● (Aside: For those familiar, this is
essentially going to do ‘fork-join’
parallelism)

52

https://en.cppreference.com/w/cpp/thread/thread

Thread Example - Launching a thread (2/2)

● #include <thread>
○ std::thread

● (Aside: For those familiar, this is
essentially going to do ‘fork-join’
parallelism)

53

Don’t forget to
link in the
pthread library
for posix users.

https://en.cppreference.com/w/cpp/thread/thread

Visual execution of “Hello Thread” (1/13)

54

Visual execution of “Hello Thread” (2/13)

55

Main Thread

main() function where all
C++ programs start.

We have 1 thread in our
program (the main thread)

Visual execution of “Hello Thread” (3/13)

56

Main Thread

We begin constructing
std::thread
myThread

Visual execution of “Hello Thread” (4/13)

57

Main Thread

std::thread myThread

Visual execution of “Hello Thread” (5/13)

58

Main Thread

std::thread myThread(&test,100)

Our new thread
will begin
executing it’s
logical control
flow from the
‘test’ function.
separately from
main()

The thread will
start executing
immediately on
construction

(Remember,
threads shares
code and the
heap)

Visual execution of “Hello Thread” (6/13)

59

Main Thread

myThread

So now we have two
“threads” executing

std::thread myThread(&test,100)

Visual execution of “Hello Thread” (7/13)

60

Main Thread

Both threads are
executing concurrently!

(maybe on separate cores, or
maybe on the same one)

std::thread myThread(&test,100) myThread

Visual execution of “Hello Thread” (8/13)

61

Main Thread

myThread.join()

std::thread myThread(&test,100) myThread

● We just happen to execute the next line in main
thread

● myThread.join() tells this thread (‘main’) to wait
on our other thread (tid) to finish.

○ We ‘wait’ in the main thread, because this is
where we are calling join from

Visual execution of “Hello Thread” (9/13)

62

Main Thread

std::thread myThread(&test,100)

myThread.join()

myThread

Visual execution of “Hello Thread” (10/13)

63

Main Thread

myThread.join()

std::thread myThread(&test,100)

std::cout

myThread

Visual execution of “Hello Thread” (11/13)

64

std::thread myThread(&test,100)

Main Thread

myThread.join() std::cout

return

myThread

When we return, our
thread terminates.
Now our ‘main’ thread
can resume

Visual execution of “Hello Thread” (12/13)

65

Main Thread

myThread.join()

std::thread myThread(&test,100)

std::cout

myThread

return

Visual execution of “Hello Thread” (13/13)

66

Main Thread

std::thread myThread(&test,100)

myThread.join()

return

std::cout

myThread

return

Same example as before -- but with a lambda!

● Same example as before,
but instead of a function, I
have a lambda with 1
parameter (and no return
type)

○ std::thread takes a callable as
the parameter--so lambdas,
functions, etc. are all fine!

67

https://en.cppreference.com/w/cpp/named_req/Callable

Now how about if we wanted 10 threads (0/5)

● Let’s create a
std::vector<std::thread>

○ Then we’ll launch 10
threads from a loop

● It’s important however,
that we also join each of
the threads!

68

Now how about if we wanted 10 threads (1/5)

● So here we create each
of our threads and join
them

69

Now how about if we wanted 10 threads (2/5)

● So here we create each
of our threads and join
them

70

Now how about if we wanted 10 threads (3/5)

● So here we create each
of our threads and join
them

71

The result seems a little
strange...anyone see the
problem?

Now how about if we wanted 10 threads (4/5)

● So here we create each
of our threads and join
them

72

● By joining our threads immediately after
launching our code, we’ve effectively
made our program sequential (i.e. no
performance gain)

● This is a form of over-synchronization

https://aws.amazon.com/blogs/devops/detecting-concurrency-bugs-with-amazon-codeguru/

Now how about if we wanted 10 threads (5/5)

● So here we create each
of our threads and join
them

73

Here’s the fix -- move ‘join’ to ‘unblock’ (i.e.
avoid waiting) while spawning new threads

Observe the new output, the thread
execution is out of order now (which is expected when 10
threads are simultaneously executed, the threads are scheduled according to OS)

C++ 20 - std::jthread

● std::jthread launches a thread
and joins the thread on
destruction

○ This may be more useful
(especially for beginners) as we
don’t forget to join!

■ If you need more control on
when to join, then prefer
std::thread and join
explicitly

○ (Note: This codes does the right
thing--threads are immediately
launched and not sequentially
waited upon)

74

75

● Now that we
have the basics
of threads, I
want to focus on
a few more use
cases of threads.

● I offer another
‘slower’
walkthrough of
the previous
concepts here if
you’d like to
revisit any.

○ I also focus
more on
pitfalls of
deadlock
and
locking
strategies

Back to Basics: Concurrency - Mike Shah - CppCon 2021

https://youtu.be/pfIC-kle4b0?si=5SM3sdI6hKXGKi7p&t=691

Teams of threads
Data Parallelism

76

Main Thread

jthread1

jthread2

jthread3

jthread4

Main Thread

Thread Team (1/9)

77

● So now that we have the
idea of a ‘jthread’ let’s do a
more interesting problem

○ Let’s spawn multiple threads
that work on some ‘shared
data’ to solve a problem

○ We’ll increment some values in
shared memory to start.

Thread Team (2/9)

78

● So now that we have the
idea of a ‘jthread’ let’s do a
more interesting problem

○ Let’s spawn multiple threads
that work on some ‘shared
data’ to solve a problem

○ We’ll increment some values in
shared memory to start.

Main Thread

jthread1

jthread2

jthread3

jthread4

Main Thread

From the main thread we’ll ‘spawn’ 4 threads in a
loop -- push them into a vector (like previous) and
have them work on a separate block of memory

Thread Team (3/9)

79

● So now that we have the
idea of a ‘jthread’ let’s do a
more interesting problem

○ Let’s spawn multiple threads
that work on some ‘shared
data’ to solve a problem

○ We’ll increment some values in
shared memory to start.

Main Thread

jthread1

jthread2

jthread3

jthread4

Main Thread

Below is an example of ‘shared memory’

Shared memory
(i.e. a big array)

Thread Team (4/9)

80

● So now that we have the
idea of a ‘jthread’ let’s do a
more interesting problem

○ Let’s spawn multiple threads
that work on some ‘shared
data’ to solve a problem

○ We’ll increment some values in
shared memory to start.

Main Thread

jthread1

jthread2

jthread3

jthread4

Main Thread

Each thread writes to separate indices

read/write this block

read/write this block

read/write this block

read/write this block

jthread1

jthread2

jthread3

jthread4

Thread Team (5/9)

81

● Here is the resulting code

Thread Team (6/9)

82

● Here is the resulting code

Here we initialize a chunk of shared memory

Thread Team (9/9)

83

● Here is the resulting code

Next we create a ‘worker thread’ that will execute --
observe:
● An index and ‘jobSize’ provides the ‘range’ (start and

finish) of where we’ll access the array.
○ Care is taken so we do not overlap

Thread Team (1/

84

● Here is the resulting code

We then do ‘5’ iterations with ‘4’ worker threads

Thread Team (9/9)

85

● The program works as expected
○ i.e. We successfully increment each

value ‘5’ times
○ (Printing out the 256, fives

sequentially at the end)

Thread Team Round 2 (1/5)

86

● Great -- now let’s do a real
test on a real workload --
I’ve modified the program
to now run ‘50000’ times

○ and ... (next slide)

Thread Team Round 2 (2/5)

87

● Great -- now let’s do a real
test on a real workload --
I’ve modified the program
to now run ‘50000’ times

○ and ... (next slide)
○ CRASH

Thread Team Round 2 (3/5)

88

● Question to Audience:
○ What is the issue? (Hint highlighted)

Thread Team Round 2 (4/5)

89

● Question to Audience:
○ What is the issue? (Hint highlighted)
○ Answer: Perhaps too many threads

created on stack at once
■ I have created 50,000*4 threads

for one process.
● The threads don’t

terminate after all, until
‘vector’ destructor is
called

● (And that is end of
program)

■ Note: With other thread
libraries, we aware of what
could happen when resizing
containers (std::threads are
non-copyable, which is good
and prevents weird behavior).

Thread Team Round 2 (5/5)

90

● Live GDB Session:
○ -gdb-set mi-async [on|

■ Then load executable: file ./prog
■ Then

○ b 37 if j > 15
■ Observe that ‘threads vector ‘never

shrinks!
■ Note: threads are ‘moved’ instead of

copied, but we still have a large
‘move’ to do -- plus our stack of
‘functions’ potentially grows very
fast!

○ set scheduler-locking on
■ Mode needs to be ‘on’
■ This pauses all threads when one

stops -- easier to debug
○ display threads.size()

■ Updates when we push into size
○ Press ‘c’ for continue a few times
○ call malloc_stats()

■ Gives us some idea of memory
allocations (at least for the heap
allocations with threads)

Thread Team Fixed (1/2)

91

● The fix itself was quite
simple -- but could be
tricky to find!

○ Idea is to move ‘threads’ into
scope of each iteration

○ Would I have found this bug if I
only launched 50 threads? How
about 1000?

○ The answer is it’s system
dependent on the thread limits

Thread Team Fixed (2/2)

92

● There are a finite number of
threads available on your
operating system

○ As well as stack size (ulimit -s
indicates 8mb on my machine)

○ (See ‘ulimit -a’ for more info)

Can I launch 50,000 threads with my limit?

93

● Searching: nl /etc/systemd/system.conf
○ I’m allowed to have 15% of my maximum allowable threads allocated to a process on Ubuntu

22.04
○ (This seems reasonable -- I could for instance launch 25,000 threads no problem -- probably

way too many though!)
● Probably not a good idea to launch this many on your desktop CPU in 2024

○ 2 threads per 1 core is a ‘metric’ used by some
■ Threads have a cost to start and to join
■ Generally this is considered ‘costly’

● This brings up two interesting ideas
○ The first is whether ‘sequential’ execution is actually better in some cases
○ The second is -- how can we avoid ‘recreation’ of threads

■ i.e. the idea of a thread pool

Sequential Execution is Sometimes Better

94

Sequential (1/2)

95

● Comparing the sequential
performance

○ Get the correct answer (useful
for unit testing!)

○ Hmm, seems to run quite fast!
○ Less complicated code even

Sequential (2/2)

96

● In my benchmarks why
does the sequential
benchmark win?

○ Less time spinning up
threads

○ Better cache locality

4 threads, constantly spinning up new threads

1 thread sequentially calling accumulate function

False Sharing

97

(Aside) How many threads to work together? (0/2)

98

● We can query with
std::thread::hardware_concurrency() a
‘good’ number of threads for our
hardware.

● We also have to consider our ‘cache’
○ Basically -- we want to access (for my specific

architecture) no more than 64 bytes on
independent threads.

■ Accessing more than that ‘shares’ data
that must be evicted at least to the L3
cache, and then ‘kept coherent’ amongst
other cores.

■ This creates a great slow down!
○ https://devblogs.microsoft.com/oldnewthing/2

0230424-00/?p=108085
○ https://en.cppreference.com/w/cpp/thread/ha

rdware_destructive_interference_size

https://www.researchgate.net/publication/322994264/figure/fig4/AS:599034075029513@1519832261760/A-three-level-shared-cache-quad-core-ar
chitecture.png

https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
https://devblogs.microsoft.com/oldnewthing/20230424-00/?p=108085
https://devblogs.microsoft.com/oldnewthing/20230424-00/?p=108085
https://en.cppreference.com/w/cpp/thread/hardware_destructive_interference_size
https://en.cppreference.com/w/cpp/thread/hardware_destructive_interference_size
https://www.researchgate.net/publication/322994264/figure/fig4/AS:599034075029513@1519832261760/A-three-level-shared-cache-quad-core-architecture.png
https://www.researchgate.net/publication/322994264/figure/fig4/AS:599034075029513@1519832261760/A-three-level-shared-cache-quad-core-architecture.png

(Aside) How many threads to work together? (1/2)

99

● Okay -- so I made the fix in regards
to accessing ‘64 bytes’ (16 ints, 4
bytes each) per thread

○ But we’re still slower!
■ (In fact, ~10 times slower now than

previous threads example, and
several orders of magnitude slower
than simple sequential code)

(Brilliant talk by Scott Meyers on this by the way!
https://www.youtube.com/watch?v=WDIkqP4JbkE)

https://www.youtube.com/watch?v=WDIkqP4JbkE

(Aside) How many threads to work together? (2/2)

100

● Note: Slight confession -- the
amount of work in our ‘thread’ is so
trivial we should never have used
threads in the first place

○ BUT -- I have to introduce these ideas to
you somehow in a slideshow :)

(Brilliant talk by Scott Meyers on this by the way!
https://www.youtube.com/watch?v=WDIkqP4JbkE)

https://www.youtube.com/watch?v=WDIkqP4JbkE

Thread Pool
Removing issue of thread creation

101

Thread Pools

102

● A thread pool is a ‘pool’ of threads that are allocated at startup
○ The ‘pool’ of threads is long lived, and ‘grab’ work as needed.

● We’ll need to however think about some way to otherwise ‘keep our
thread alive’

○ Recall that threads just start executing otherwise when they are invoked.

Thread Pools

103

● A first attempt points to some
sort of ‘struct’ like on the right --
the example works the same

● Maybe we can just wrap the code
and use ‘move semantics’

○ This works -- and we get similar
performance when compared to our
first data-parallel working example

○ But we’ve not yet solving our
problem of thread creation -- but we
are getting closer, and getting some
encapsulation.

● But we can do better

Condition Variables

104

Introducing Condition Variables

105

● Condition variables
○ Allows us to keep threads alive (without having to respawn new threads, which is

expensive)
○ Then we can dispatch work to worker threads periodically in order to do work on

a subset of data.
● This can be used as a ‘signaling pattern’
● Condition variables

○ Work with a ‘shared memory’ variable (e.g. use a boolean as a flag)
■ Typically that shared memory is protected by a mutex
■ You must use shared memory with the mutex
■ mutex is automatically acquired by the worker.

Condition Variables Example

106

● A condition variable allows
us to otherwise ‘signal’ from
one function to the other
when there is work to be
done.

○ A common pattern is the
producer/consumer pattern

○ When data is ‘produced’ then a
signal is made that work is ready
to be acquired and processed by
a ‘consumer’ thread.

● Observe that we need three
parts:

● some form of synchronization (a
mutex)

● a condition_variable
● a ‘variable’ (i.e. ready)

Condition Variables Example (producer)

107

● The job of the producer
is to do some work on a
protected piece of data

○ (Note std::lock_guard with
locking safely through
RAII)

● It’s worth noting also at
this point that our
‘consumer’ will be
blocked until ‘notified’
(See notify_all)

Condition Variables Example (consumer)

108

● Here’s the consumer side
○ The consumer ‘diligently awaits’ to acquire the lock
○ The ‘wait’ portion otherwise is where we awaken when we are notified by the

producer.
■ We won’t get here until we otherwise acquire the lock anyway -- so that

remains the blocking operation

Troubleshooting and Debugging
Let’s see the program run!

109

Live GDB: Conditional Variable Demonstration

110

● Build Command
○ g++ -g -Wall -std=c++23 simple_cv.cpp -o prog -lpthread

● Execute
○ ./prog

● Debug
○ gdb --tui ./prog
○ (Can try ‘info threads’) to see the threads
○ (Still a good idea to setup ‘set scheduler-lock on’ as well)

Live Live Recorder and UDB: Demonstration

111

● Run and create a recording from Undo -- if you prefer instead of
gdb

○ /home/mike/Downloads/undo-7.2.1/live-record ./prog
○ Then use ‘rr’ or ‘udb’ to replay

■ /home/mike/Downloads/undo-7.2.1/udb
prog-3008963-2024-05-14T10-37-40.324.undo

● Try ‘start’ ‘layout src’ and then using ‘n’ to step through
● ‘info threads’ and other GDB knowledge works as well

○ Neat way to debug these things is with ‘live recorder’
■ https://docs.undo.io/UsingTheLiveRecorderTool.html

https://docs.undo.io/UsingTheLiveRecorderTool.html

Condition_variable with thread pool -- what’s the point?

112

● We went from a data parallel problem to a ‘thread pool’
○ The ‘data parallel’ problem may or may not need to reuse threads -- perhaps

crunching numbers is just fine
○ However -- it’s useful to know how to reimplement some of these systems.

● The point of the mechanism (i.e. a conditional variable) is to
understand this ‘signal pattern’ is going to be we now have a
mechanism to ‘block’ our threads when executing

○ They can then ‘pick up’ work, or be assigned new work when needed.

Thread Pool Implementation

113

● A complete implementation
for a thread pool can be
found here

○ I found it is a good example of
combining these ideas of
‘submitting a task’ to a pool,
and reusing threads

○ Note: This takes us into
another corner of the
language with promises,
futures, and packaged_tasks.

https://github.com/bshoshany/thread-pool

https://github.com/bshoshany/thread-pool

Some High Level Takeaways

● Revisiting the gaming example -- we
may have something that is
visualized like this

○ ‘Updates’ happen in highly parallel
fashion

■ Updates can be arbitrary, so need
some sort of ‘task’ or ‘thread’ pool

■ Sync points (purple bars) are
condition variables -- or otherwise
other primitives (e.g. barrier)

● Thread errors take some thought
○ Think about the problem for a bit
○ Utilize tools like live-recorder to replay

the output of program.
■ Concurrent programs are

non-deterministic, and hard to
reproduce!

114

More Resources for Going Further

115

Operating Systems: Three Easy Pieces

116

● Free book chapters on concurrency.
● https://pages.cs.wisc.edu/~remzi/OSTEP/

https://pages.cs.wisc.edu/~remzi/OSTEP/

More Thread Patterns/Ideas

117

● https://greenteapress.com/wp/se
maphores/

https://greenteapress.com/wp/semaphores/
https://greenteapress.com/wp/semaphores/

Further resources and training materials

118

● Playlist on C++ concurrency on
YouTube:

○ https://www.youtube.com/playlist?l
ist=PLvv0ScY6vfd_ocTP2ZLicgqKnv
q50OCXM

● Slides from this talk will be
added to my website shortly.

https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM

Further resources and training materials

119

● More C++ Software Design
Videos:

○ https://www.youtube.com/playlist?l
ist=PLvv0ScY6vfd9wBflF0f6ynlDQua
eKYzyc

https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc

Further resources and training materials

120

Some useful talks on concurrency

● GCAP 2016: Parallel Game Engine Design - Brooke Hodgman
○ https://www.youtube.com/watch?v=JpmK0zu4Mts

● The MAW: Safely Multithreading the Deterministic Gameplay of
'Age of Empires IV'

○ (Slideshow below -- talk may be available on YouTube or with GDC vault access)
○ https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the

● Multithreading the Entire Destiny Engine (GDC 2015)
○ https://www.youtube.com/watch?v=v2Q_zHG3vqg

● Sean Parent: Better Code Concurrency
○ https://www.youtube.com/watch?v=zULU6Hhp42w

https://www.youtube.com/watch?v=JpmK0zu4Mts
https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the
https://www.youtube.com/watch?v=v2Q_zHG3vqg
https://www.youtube.com/watch?v=zULU6Hhp42w

Fundamentals of Concurrency
Threads, Pools, and Patterns

-- in C++
with Mike Shah

19:00 - 21:00 Tue, May 14, 2024

~60 minutes | Introductory/Advanced
Audience 121

Merci beaucoup C++ FRench User Group
pour le invitation!

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

122

